[image: image1.png]TATA

ePDE
Coding standards and guidelines
PA Department of Education

ePDE

Pennsylvania Department of Education

Coding Standards and Guidelines

For

ASP.NET & VB.NET
Version 1.4
About this document

This document specifies the coding standards and guidelines for web applications (ASP.NET, VB.NET). The coding standards in this document explain what naming conventions should be followed while coding. In addition, it provides best practices as guidelines for coding.

This document does not contain analysis, design or testing guidelines

Version History

	Version
	Updated By
	Updated Date
	 Description
	Reference

	1.0
	Sriram Sangameswaran
	09/21/2005
	Document Created
	

	1.1
	Amit Bhoir
	10/06/2006
	Updated the VSS Labeling Standards
	

	1.1
	Jyothikiran Bhat
	10/10/2006
	Document Reviewed
	

	1.1
	Haritha Ayyalasomayajula
	4/2/2007
	Included a new section, Sec. 5.0 for naming conventions for Project Delivery Note. ProductId naming should be similar to Labeling Standards in VSS.
	

	1.2
	Smita Gupta & Naveen Lagadapati
	01/04/2010
	Updated to include coding standards for ASP .NET 3.5
	

	1.3
	Tracy Skorka
	3/4/2011
	Updated for undocumented file and control types
	

	1.4
	Kristel Carter
	3/17/2014
	Updated references from VSS to TFS and inserted coding standards for SP’s.
	

References

The following are sources of information for this document:

	Source
	Information

	Internet Web site http://www.w3.org/WAI/
	W3C standards

	Internet Web site http://www.trace.wisc.edu/world/web/index.html
	Coding standards and guidelines

	TCS Coding standards and guidelines document
	Coding standards and guidelines

	MSDN
	Coding standards and guidelines

Contents

11.
Web Application Coding Standards

11.1
ASP.NET

11.1.1
User Controls (*.ascx files)

11.1.2
Web Forms (*.aspx files)

11.1.3
Other file types (*.*)

11.1.4
Prefix for Names of widgets / controls

21.1.5
ASP.NET Coding Guidelines

31.2
VB.NET

31.2.1
NameSpaces

31.2.2
Variable/Attribute Prefix based on Data-types

41.2.3
Code Formatting Standards

41.2.4
Commenting

51.2.5
Classes/Class members

51.2.5.1
Class Naming

51.2.5.2
Class Member Naming

61.2.5.3
Class Properties Naming

61.2.5.4
Enumerations

61.2.5.5
Variable Properties Naming

71.2.5.6
Try, Catch, Finalize and Dispose

71.2.5.7
Data Access Objects

81.3
JavaScript Standards

81.3.1
Guidelines

81.3.2
Variable Naming Convention

91.3.3
Function Naming Convention

91.4
SP/UDF Standards

91.4.1
Stored Procedures (SP)

91.4.2
User Defined Functions (UDF)

101.4.3
Commenting For SP/UDF

101.5
Good Programming Practices

122.
Web Application Coding Guidelines

122.1
Naming Conventions

122.1.1
Routines / Methods

122.1.2
Variables

122.2
Format

132.3
Comments

142.4
Class/Class Member Guidelines

142.5
Arrays/collections

142.6
SQL Specific Techniques

152.7
Miscellaneous

163.
Do’s and Don’t’s

204.
Labels in TFS

215.
Naming Conventions for Project Delivery Note (PDN)

216.
Architecture

1. Web Application Coding Standards

1.1 ASP.NET

1.1.1 User Controls (*.ascx files)

Prefix User Control names with “uc”. The rest of the user control name should be in Pascal casing. (e.g., ucMyUserControl)

1.1.2 Web Forms (*.aspx files)

Prefix Web Form names with “wf”. The rest of the web form name should be in Pascal casing. (e.g., wfMyWebForm)

1.1.3 Other file types (*.*)
The name should be in Pascal Casing and describe the function of the file. (e.g. PinkTheme,css, AppHeader.xsd). The file extension should not be part of the name (e.g. Not AppHeaderXSD.xsd).
1.1.4 Prefix for Names of widgets / controls

· Web Form – wf

· Textbox – txt

· TextArea - txa

· Checkbox – chk

· CheckBox List - cbl

· Label - lbl

· Hidden elements – hdn

· Drop Down List – ddl
· Button – cmd

· Imagebutton – imb

· LinkButton – lnb

· Radio Button – rdo

· Radio Button List – rbl

· ListBox – lst

· Image – img

· Table - tbl
· tr – tr

· td – td

· div – div

In Web Forms

· Menu - menu

· TabPanel - tabPnl

· Panel – pnl

· PlaceHolder - phd

· Range Validator – rav

· Regular Expression Validator - rev

· Required Field Validator - rfv

· Compare Validator - cmv

· Custom Validator - cuv

· Hyperlink – hlk

· DataGrid – dtg

· DataList – dtl
· DataView - dv

· GridView - gv

· CrystalReportViewer –crv

· Repeater -rep

· Update Panel - updPnl

· CalendarExtender - ce

· ModalPopupExtender - mdlPopup

· FilteredTextBoxExtender - filteredTextBoxExtender

· Content - content

· MutuallyExclusiveCheckBoxExtender - mex

· TabContainer - tabContainer

1.1.5 ASP.NET Coding Guidelines
· Use style sheets to position text and objects within pages rather than physically marking up text and graphics.

· Ensure that css element names describe the element and any special formatting, e.g. .TD_GrayBackground

· Ensure that pages are readable and usable without style sheets.

· Provide alternative text for all images and image maps.

· The "alt" attribute is mandatory for the <AREA> and elements.

· For example, .

· Use client-side (instead of server-side) image maps.

· Provide a description for each link in an image map.

· Do not use image maps to create graphical "submit" buttons.

· Provide a <NOSCRIPT> option for all scripts.

· Properly nest headings. (Use style sheets for formatting)

· Avoid using tables or <PRE> elements to arrange text documents in columns or otherwise layout a page.

· Create link phrases that make sense when read out of context (but they should not be too verbose).

· Use ASP/HTML buttons instead of image buttons.

· Create keyboard shortcuts for form elements wherever appropriate.

· The look and feel of all the pages should be uniform and consistent across the application. Use master pages and skins for achieving this.
· Don’t use tag in HTML code, instead use tag.

· All the input value validations should be made at client side. For security reasons and browser compatibility do server side validations also.

· All common client side validations should be in one java script file, say, ValidationRepository.js. Do not write validations in a page unless it is page-specific.

· Avoid specifying sizes in <TD> tags. Fonts and sizes may be different on readers' systems; so specific <TD> size parameters can result in truncated text.

· Do not use <big>, <small> tags in HTML code, instead specify the font size from CSS i.e., use tags H1, H2, P

· Avoid using many nested tables for data and layout. Instead use ‘rowspan’ and ‘colspan’ properties wherever it can be.

· Validate HTML syntax of page every time changes are made to it. (A tool can be used for that – HTML Validator.
· Do not use Active X controls on pages.

· Do not use session variables throughout the code. Use session variables only within the classes and expose methods to access the value stored in the session variables. A class can access the session using System.Web.HttpCOntext.Current.Session
1.2 VB.NET

1.2.1 NameSpaces

· The namespace should be given a meaningful name in the context of business logic, i.e., ExamineeLib, TranscriptLib, etc. (usually the project name, provided project names convey what they are).
1.2.2 Variable/Attribute Prefix based on Data-types

	VB.NET Type
	Prefix to be added
	.NET Type

	Bool
	b
	System.Boolean

	Byte
	byt
	System.Byte

	Sbyte
	sbyt
	System.Sbyte

	Char
	c
	System.Char

	Date/DateTime
	dt
	System.DataTime

	Decimal
	dec
	System.Decimal

	Double
	d
	System.Double

	Float
	f
	System.Single

	Integer
	i
	System.Int32

	Uint
	ui
	System.UInt32

	Long
	l
	System.Int64

	Ulong
	ul
	System.UInt64

	Object
	o
	System.Object

	Short
	i
	System.Int16

	Ushort
	ui
	System.UInt16

	String
	s
	System.String

1.2.3 Code Formatting Standards

· For the variable names, use mixed case instead of underscores to make names easy to read (i.e., bCallClosed).

· Accommodate the comments/code in such a way to avoid the horizontal scrolling. Ensure each line of code/comment does not have more than 80 characters.

· Use space(s) before and after all the operators.

· Put a space after each comma in comma-delimited lists, such as array values and arguments.

· Use #region to group related pieces of code together. If you use proper grouping using #region, the page can be collapsed.

· Keep private member variables, properties and methods in the top of the file and public members in the bottom.

1.2.4 Commenting

The following are the minimum requirements:

· For classes, the requirement is:

''' <summary>

''' One-liner describing the class

''' </summary>

''' <history>
'''

[Name]
[Date]
Created
''' </history>
· For methods, the requirement is:

''' <summary>

''' Description of the method

''' <para>New line in the description of the method</para>

''' </summary>

''' <param name="param1">Description of param1</param>

''' <param name="param2">Description of param2</param>

''' <returns>Description of the return parameter</returns>

· For properties, the requirement is:

''' <summary>

''' Property XXX

''' </summary>

''' <value>

''' Description of property XXX

''' </value>

· Use one blank line to separate logical groups of code.

 Dim oHashTable As New Hashtable

 Dim oDtEdHudUserInstData As New DataTable
If condition Then

 //Do something..

End If

· There should be one and only one single blank line between each method inside the class.

· Do not write comments for every line of code and every variable declared
· Use // or /// for comments. Avoid using /* … */

· Always write XML comments to describe the functionality of a class and method.

· Perform spelling check on comments and also make sure proper grammar and punctuation is used.

1.2.5 Classes/Class members

1.2.5.1 Class Naming

· Do not use any prefix for Class Names. Keep Institution, Admin, InstCtgy, etc. Keep these same as table names if there is a mapping.

· Do not use “_” (underscore), i.e., use ClassName, not Class_Name.

· Do not qualify the class names with the application or project name; namespaces will take care of that.

i.e.,. use ClassName, not GEDClassName

· The naming conventions for the object are as follows:

· Use Pascal casing

· Prefix the object name with ‘o’

· Thus, a local object will be represented as oObjectName

1.2.5.2 Class Member Naming

· All class members (variables and methods) should have Pascal casing.

· All parameters to member functions (and other functions, if any) should be prefixed with p, i.e., psFirstParameter.

1.2.5.3 Class Properties Naming
· All class properties should have Pascal casing.

· No prefix should be specified for the properties (E.g. CurrentPage)

1.2.5.4 Enumerations

· The name of an enumeration should be in uppercase.

· Each enumerated value should be prefixed with ‘en’, i.e., enDIRECTION with members as EAST = 1, WEST = 2, ….NORTH_EAST = 4. i.e., use underscore (“_”) to separate two words.
1.2.5.5 Variable Properties Naming
· Use Meaningful, descriptive words to name variables. Do not use abbreviations.

Good:

string address

int salary

Not Good:

string nam
string addr
int sal

· Do not use single character variable names like i, n, s etc. Use names like index, temp

One exception in this case would be variables used for iterations in loops:

for (int i = 0; i < count; i++)

{

...

}

If the variable is used only as a counter for iteration and is not used anywhere else in the loop, many people still like to use a single char variable (i) instead of inventing a different suitable name.

· Do not use underscores (_) for local variable names.

· All member variables must be prefixed with underscore (_) so that they can be identified from other local variables.

· Do not use variable names that resemble keywords.

· Prefix boolean variables, properties and methods with “is” or similar prefixes.

· Ex: private bool _isFinished

1.2.5.6 Try, Catch, Finalize and Dispose

· Use try-catch statements wherever necessary. Do not overuse.
· Be careful while using them after web service calls since these might suppress actual exceptions thrown in web services. Use TRY-CATCH blocks in such a way that they don’t overwrite web service exceptions.
· Invoke Dispose/Close method of objects explicitly, if they have one.

· Do not use GC.Collect() for disposing of objects. It is a considerable overhead in terms of system resources. Also, calling Garbage Collector will not immediately dispose the objects. It will just mark the objects for disposal.

· After invoking Dispose method of an object, explicitly assign Nothing to the object.

· Close all database connections, sockets, file streams etc in the finally block

· Do not write try-catch in all your methods. Use it only if there is a possibility that a specific exception may occur and it cannot be prevented by any other means. For example, if you want to insert a record if it does not already exists in database, you should try to select record using the key. Some developers try to insert a record without checking if it already exists. If an exception occurs, they will assume that the record already exists. This is strictly not allowed. You should always explicitly check for errors rather than waiting for exceptions to occur. On the other hand, you should always use exception handlers while you communicate with external systems like network, hardware devices etc. Such systems are subject to failure anytime and error checking is not usually reliable. In those cases, you should use exception handlers and try to recover from error.

1.2.5.7 Data Access Objects

Use column names to access the fields/values in data set/data table/array elements. Use Index for this purpose only. If Index is not possible, use column names instead. Usage of Index, in this case, will complicate the maintenance of the code.

1.3 JavaScript Standards

This section documents the coding standards for JavaScript. Java Script is used in Web pages to add interactivity, conditional logic and validations on the client side.
1.3.1 Guidelines

· JavaScript is a case sensitive language. So, it is important to maintain consistency in capitalization.

· JavaScript code is typically embedded into an HTML document using the SCRIPT tag. Place common JavaScript code in a separate “.js” file and include in the web page.
· Use Camel casing for the “.js” file naming.
· Use semi-colon at the end of each statement in the JavaScript.

· Use meaningful names for all objects.
· Ensure that the JavaScript will work both in IE and Netscape browsers.

· Add inline comments where required.

1.3.2 Variable Naming Convention

· Always begin variable names with character. Use Camel casing (Start a variable with a lowercase letter and capitalize the first letter of each word thereafter)
· Do not use underscore in the name
· The variables defined in JavaScript do not have any data type associated with it but the developer intents to use a variable as a particular type. Add prefix as per the following table:
	Variable Type
	Prefix to be added

	Bool
	B

	Char
	C

	Double
	D

	Float
	F

	Integer
	I

	Long
	l

	Object
	o

	Short
	i

	String
	s

· Constants should be in uppercase.
1.3.3 Function Naming Convention

· Begin function names with character. Use Camel casing (Start a variable with a lowercase letter and capitalize the first letter of each word thereafter)
· Do not use underscore in the name.
1.4 SP/UDF Standards

Refer to “PDE” database standards for the database standards and guidelines. Following are some of the standards related to Stored Procedures (SP) and User Defined Functions (UDF), which are created/updated by .Net developers:

1.4.1 Stored Procedures (SP)
· All stored procedures should be prefixed with proc_. Naming conventions should be as follows:

· proc_All –Returning all records.
· proc_Bch –Pertaining to a batch program.
· proc_Del - Any deletion of records.
· proc_Get –Pertaining to a retrieval of records.
· proc_Ins –Inserting records.
· proc_Rpt –Pertaining to a report.
· proc_Sch –Search related functionality.

· proc_Upd –Updating of any records.
· The remaining part of the name should be in Pascal casing (i.e., proc_GetAuthorNames)

· Use Team Foundation Server to edit and while saving make sure the extension of the file is “.prc” and not “.sql”. Trying to use interchangeably causes different versions of same procedures to exist in TFS with different extensions. By default, VS.Net creates “.prc” when you add a new item or drag from database while adding initially in the database project.

1.4.2 User Defined Functions (UDF)
· All UDFs should be prefixed with func_.

· The remaining part of the name should be in Pascal casing (i.e., func_GetInstCtgyCodeFK)

· Use Team Foundation Server to edit and while saving make sure the extension of the file is “.udf” and NOT “.sql”. Trying to use interchangeably causes different versions of same UDFs to exist in TFS with different extensions. By default, VS.Net creates “.udf” when you add a new item or drag from database while adding initially in the database project

1.4.3 Commenting For SP/UDF
Each SP/UDF file should include a comment header as follows:

· Purpose: functional purpose of stored procedure/UDF.

· Parameters: a list of the parameters and a description.

· Return: a description of the return value if any.

Example:

/*

Created By:

Created Date:

 Description: This stored procedure/UDF will insert a record into Examinee Table.

 PARAMETERS

 FundCode - Code for the Fund

 Description - Description of the Fund

 RETURNS:

 Unique Integer record ID for the Fund

· Last Modified By

· Last Modified Date

· Description of Modification

· Sample Call Syntax

1.5 Good Programming Practices
· Avoid writing very long methods. A method should typically have 1~25 lines of code. If a method has more than 25 lines of code, you must consider re factoring into separate methods.
· Method name should tell what it does. Do not use mis-leading names. If the method name is obvious, there is no need of documentation explaining what the method does
Good:

Private Sub SavePhoneNumber (sPhoneNo as string)

 // Save the phone number.
End Sub
Not Good:

// This method will save the phone number.

Private Sub SaveDetails (sPhoneNo as string)

 // Save the phone number.
End Sub
· Do not hardcode numbers. Use constants instead. Declare constant in common file like Constants.vb or use XML serialization classes.
Note: . You should use the constants in the config file or database so that you can change it later. Declare them as constants only if you are sure this value will never need to be changed.

· Use the assemblyinfo file to fill information like version number , description, company name , copyright notice etc or use assembly information window from project - > properties - > assembly

· Do not hardcode strings. Use resource files.
· Convert strings to lowercase or upper case before comparing. This will ensure the string will match even if the string being compared has a different case.
· Use String.Empty instead of “”
If (name == String.Empty)

// do something

End If

· Never hardcode a path or drive name in code. Get the application path programmatically and use relative path.
· When displaying error messages, in addition to telling what is wrong, the message should also tell what should the user do to solve the problem. Instead of message like "Failed to update database.", suggest what should the user do: "Failed to update database. Please make sure the login id and password are correct."
· Import scripts , stylesheets and ajax declarations in master page.
2. Web Application Coding Guidelines

2.1 Naming Conventions

The naming scheme is one of the most influential aids to understand the logical flow of an application. A name should say about "what" rather than "how." Make names long enough to be meaningful but short enough to avoid verbosity. The following are recommended naming techniques:

2.1.1 Routines / Methods

· Avoid elusive names that are open to subjective interpretation, such as AnalyzeThis() for a routine, or xxK8 for a variable. Such names contribute to ambiguity more than abstraction.

· In object-oriented languages, it is redundant to include class names in the name of class properties, such as Book.BookTitle. Instead, use Book.Title.

· Use the verb-noun method for naming routines that perform some operation on a given object, such as CalculateTransmittalAmount().

· Acquire resources as late as possible and release them as soon as possible. As such, developers should create objects as late as possible, and destroy them as early as possible to free resources.

2.1.2 Variables

· Append computation qualifiers (Avg, Sum, Min, Max, Index) to the end of a variable name where appropriate.

· Use complementary pairs in variable names, such as min/max, begin/end, and open/close.

· When naming status variables, which are not booleans, avoid using terms such as ‘Flag’. Instead of documentFlag, use a more descriptive name such as documentFormatType.

2.2 Format

Formatting makes the logical organization of the code obvious. Taking the time to ensure that the source code is formatted in a consistent, logical manner is helpful for readability and code reviews.

The following are recommended formatting techniques:

· Use white space to provide organizational clues to source code. Doing so creates "paragraphs" of code, which aid the reader in comprehending the logical segmenting of the software.

· When a line is broken across several lines, make it obvious that it is incomplete without the following line by placing the concatenation operator (to be suitably chosen depending on the language) at the end of each line instead of at the beginning.

· Where appropriate, avoid placing more than one statement per line.

· Put each major SQL clause on a separate line so statements are easier to read and edit. For example:

SELECT

FirstName,

LastName

FROM

Customers

WHERE

State = 'WA'

2.3 Comments

One challenge of software documentation is ensuring that the comments are maintained and updated in parallel with the source code. Although properly commenting source code serves no purpose at run time, it is invaluable to a developer who must maintain a particularly intricate or cumbersome piece of software.

Following are recommended commenting techniques:

· When modifying code, always keep the comments on it up-to-date.

· At the beginning of every routine, it is helpful to provide boilerplate comments, indicating the routine's purpose, assumptions, and limitations. A boilerplate comment should be a brief introduction that explains why it exists and what it can do.

· Avoid adding comments at the end of a line of code; end-line comments make code more difficult to read. However, end-line comments are appropriate when annotating variable declarations; in which case, align all end-line comments at a common tab stop.

· Avoid clutter comments, such as an entire line of asterisks. Instead, use white space to separate comments from code.

· Avoid surrounding a block comment with a typographical frame. It may look attractive, but it is difficult to maintain.

· Prior to deployment, remove all temporary or extraneous comments to avoid confusion during future maintenance work.

· If developer needs comments to explain a complex section of code, examine the code to determine if to rewrite it. If at all possible, do not document bad code — rewrite it. Although performance should not typically be sacrificed to make the code simpler for human consumption, a balance must be maintained between performance and maintainability.

· Use complete sentences when writing comments. Comments should clarify the code, not add ambiguity.

· Comment while coding because it is difficult to get time to do it later.

· Avoid superfluous or inappropriate comments, such as humorous sidebar remarks.

· Use comments to explain the intent of the code. They should not serve as inline translations of the code.

· Comment anything that is not readily obvious in the code.

· Use comments on code that consists of loops and logic branches. These are key areas that will assist source code readers.

· Separate comments from comment delimiters with white space. Doing so will make comments obvious and easy to locate when viewed without color clues.

· Throughout the application, construct comments using a uniform style with consistent punctuation and structure.

Note: Despite the availability of external documentation, source code listings should be able to stand on their own because hard-copy documentation can be misplaced. External documentation should consist of specifications, design documents, change requests, bug history, and the coding standard that was used.

2.4 Class/Class Member Guidelines

· Try using parameterized constructors.

· Member order

· Fields

· Constructors

· Properties

· Methods

· Structs

·
Use structs when the type acts like a primary type.

2.5 Arrays/collections

· Use collections when Add, Remove functionality is needed.

· Check out System.Collections.Specialized.

· Do not return null arrays. Use empty arrays instead. The receiver will expect to do operations on it.

2.6 SQL Specific Techniques

· Use stored procedures in lieu of SQL statements in source code to leverage the performance gains they provide.

· Use a stored procedure with output parameters instead of single record, single field SELECT statements when retrieving one row of data.

· Stored procedure execution is faster when parameters are passed by position (the order in which the parameters are declared in the stored procedure) rather than by name.

· Use uncorrelated sub-queries instead of correlated sub-queries. Uncorrelated sub-queries are ones where the inner SELECT statement does not rely on the outer SELECT statement for information. In doing so, the inner query is run once instead of for each row returned by the outer query.

· Verify the row count when performing DELETE operations.

· Keywords should be in UPPER case. For example: SELECT, UPDATE, INSERT, FROM, AND, WHERE, etc.

· Do not use ‘SELECT * FROM’ type of query. If all the columns of the table are to be selected, list all columns in the SELECT in same order as they appear in table definition.

2.7 Miscellaneous

· Minimize the use of abbreviations, but use those that are created consistently. An abbreviation should have only one meaning and likewise, each abbreviated word should have only one abbreviation. For example, if developer uses min to abbreviate minimum, it should be done everywhere and min should not be used to also abbreviate minute.

· When naming functions, include a description of the value being returned, such as GetCurrentWindowName().

· File and folder names, like procedure names, should accurately describe their purpose.

· Avoid reusing names for different elements, such as a routine called ProcessSales() and a variable called iProcessSales.

· When naming elements, avoid homonyms, such as write and right, to prevent confusion during code reviews.

· When naming elements, avoid commonly misspelled words. Also, be aware of differences that exist between American and British English, such as color/colour and check/cheque.

3. Do’s and Don’t’s

1. Do not forget to disable Debug mode: The <compilation> section in ASP.NET configuration controls whether an application is compiled in Debug mode, or not. Debug mode degrades performance significantly. Always remember to disable Debug mode before deploying a production application or measure performance.

[For syntax information about setting the debug mode for application in the web.config file, refer ASP.NET Configuration Sections in MSDN documentation]
2. Avoid excessive round trips to the server: The Web Forms page framework is one of the best features of ASP.NET, because it can dramatically reduce the amount of code needed to accomplish a task. Programmatic access to page elements using server controls and the post-back event-handling model are arguably the most timesaving features.

While it is tempting to use the time- and code-saving features of the Web Forms page framework as much as a developer can, there are circumstances in which using ASP.NET server controls and postback event handling are inappropriate. It is important to know when it is appropriate to use them.

An application typically needs to make a round trip to the server only when retrieving data or storing data. Most data manipulations can take place on the client between round trips. For example, validating form entries can often take place on the client before the user submits data. In general, if a developer does not need to relay information back to the server, then round trip to the server should not be made.

While writing your own server controls, consider having them render client-side code for up-level (ECMAScript-capable) browsers. By employing "smart" controls, a developer can dramatically reduce the number of unnecessary hits to the Web server.

3. Use Page.IsPostback to avoid extra work on a round trip: If a developer is handling server control postbacks, often there is a need to execute different code the first time the page is requested from the code. If the Page.IsPostBack property is checked, code can execute conditionally, depending on whether there is an initial request for the page or a response to a server control event. It might seem obvious to do this, but in practice it is possible to omit this check without changing the behavior of the page. For example:
Sub Page_Load(ByVal Sender As System.Object, ByVal e As System.EventArgs)

If Not Page.IsPostback Then

' First time page loads perform initialization here

End If

End Sub
Note :The Page_Load event executes on every request, so we checked Page.IsPostBack so that the first query does not execute when we process the Button_Click event postback. Note that even without this check our page would behave identically, since the binding from the first query would be overturned by the call to DataBind in the event handler.

Keep in mind that it can be easy to overlook this simple performance improvement when writing pages.

4. Use server controls in appropriate circumstances — Review the application code to make sure that use of ASP.NET server controls is necessary. Even though they are extremely easy to use, server controls are not always the best choice to accomplish a task. In many cases, a simple rendering or data binding substitution will do.
There are many cases in which rendering or databinding are most efficient techniques to use, even when developer uses server control templates. However, if developer wants to programmatically manipulate a server control's properties, handle server control events from it, or take advantage of view state preservation, then a server control would be appropriate.

A developer should examine use of server controls and look for code optimization.

5. Use System.Text.StringBuilder for string concatenation: Web applications often need to perform extensive string manipulation. Although standard string operators work for concatenation, they have a negative impact on performance. Using the System.Text.StringBuilder class to concatenate strings provides better performance, as demonstrated by the following example:

''Using concatenation operators can sometimes produce

''cleaner-looking code, but performance is not as good.

Dim sTemp As String = "This is to demonstarte " + "Append method of StringBuilder"
'' Consider replacing with StringBuilder instead:

 Dim sbTemp As StringBuilder = New StringBuilder

 sbTemp.Append("This is to demonstarte ")

 sbTemp.Append("Append method of StringBuilder")

 Dim sTemp As String = sbTemp.ToString()
6. Do not rely on exceptions in code: Exceptions are very expensive and should rarely occur in code. A developer should never use exceptions as a way to control normal program flow. If it is possible to detect in code a condition that would cause an exception, a developer should do that instead of waiting to catch the exception before handling that condition. Common scenarios include checking for null, assigning to a string that will be parsed into a numeric value, or checking for specific values before applying math operations. For example:
 '' Consider changing this:

 Dim iResult As Integer

 Dim iNum As Integer

 Try

 iResult = 100 / iNum

 Catch oExc As Exception

 iResult = 0

 End Try

 '' To this:

 If (iNum <> 0) Then

 iResult = 100 / iNum

 Else

 iResult = 0

 End If
7. Try using SqlDataReader for a fast-forward, read-only data cursor: A SqlDataReader object provides a forward, read-only cursor over data retrieved from an SQL database. Because SqlDataReader uses Tabular Data Stream (TDS) packets to read data directly from a database connection, it provides better performance than using a DataSet. Because SqlDataReader supports the IEnumerable interface, a developer can even bind server controls, as well.

8. Cache data and output wherever possible: The ASP.NET programming model provides a simple mechanism for caching page output or data when it does not need to be dynamically computed for every request. A developer can design pages with caching in mind to optimize those places in an application that is expected to have the most traffic. More than any feature of the .NET Framework, the appropriate use of caching can enhance the performance of site, sometimes by an order of magnitude or more.

9. Disable Session State when not in use: Not all applications or pages require per-user session state. If it is not required, disable it completely. This is easily accomplished using a page-level directive, such as the following:

<%@ Page EnableSessionState="false" %>

Note: If a page requires access to session variables but does not create or modify them, set the value of the directive to ReadOnly. Session State can also be disabled for Web Service methods.

To disable session state for an application, set the Mode attribute to off in the sessionstate configuration section in the application's web.config file. For example,

<sessionstate mode="off" />.

10. Avoid having very large files : If a single file has more than 1000 lines of code, it is a good candidate for refactoring. Split them logically into two or more class
11. Avoid passing too many parameters to a method: If you have more than 4~5 parameters, it is a good candidate to define a class or structure
.

4. Labels in TFS
The recommended text for labeling versions in TFS must be as described below:
ver <Project Abbreviation> <Phase Abbreviation> <Version Number>

For e.g. ver PAAPSA UAT 1.00
Note: The above label consists of text separated by a single space.

The following table lists the phase abbreviations and example for labeling versions to be used:

	Phase
	Abbreviation
	TFS Label

	Project Plan
	PP
	ver PAAPSA PP 1.0

	Requirements Analysis
	RA
	ver PAAPSA RA 1.0

	Design
	DSGN
	ver PAAPSA DSGN 1.0

	Construction
	CNSTR
	ver PAAPSA CNSTR 1.0

	System Testing
	ST
	ver PAAPSA ST 1.0

	User Acceptance Testing
	UAT
	ver PAAPSA UAT 1.0

5. Naming Conventions for Project Delivery Note (PDN)

The naming of Product ID in the Project Delivery Note must be in the following format:
 <Project Abbreviation> <Phase Abbreviation> <Version Number>

For e.g. PDTS CNSTR 1.0
Product Id is same for all the products in a given phase. This format is similar to Label Standards in TFS. Refer Section 4.0 for labeling standards in TFS.

The following table lists the details of a Project Delivery Note for Construction Phase.
	Product Id
	Product Description
	Product Version
	Delivery Location
	Delivery Format

	PDTS CNSTR 1.0
	PDTS Source Code
	1.0
	Source code is at PDTS (Main (Source Code

(Label: ver PDTS CNSTR 1.0)
	Source Code

	PDTS CNSTR 1.0
	PDTS DB Script
	1.0
	Source code is at PDTS (Main (Database (
PDTSDBProject

(Label: ver PDTS CNSTR 1.0)
	DB Script

	PDTS CNSTR 1.0
	PDTS Library Code
	1.0
	Source code is at PDTS (Main (Source Code (PDTSLib
(Label: ver PDTS CNSTR 1.0)
	Source Code

	PDTS CNSTR 1.0
	IC Web Service
	1.0
	Source code is at ICWS (Main (Source Code (ICWS
(Label: ver ICWS CNSTR 1.0)
	Source Code

Similar Product Id standards should be maintained for other phases consistent with the Labels Standards in TFS.

6. Architecture

1. Always use multi layer (N-Tier) architecture.

2. Never access database from the UI pages. Always have a data layer class which performs all the database related tasks. This will help you support or migrate to another database back end easily.

3. Use try-catch in your data layer to catch all database exceptions. This exception handler should record all exceptions from the database. The details recorded should include the name of the command being executed, stored proc name, parameters, connection string used etc. After recording the exception, it could be re thrown so that another layer in the application can catch it and take appropriate action.

4. Separate your application into multiple assemblies. Group all independent utility classes into a separate class library. All your database related files can be in another class library.

END OF DOCUMENT

TATA Consultancy Services
Confidential
Page ii

