PENNSYLVANIA DEPARTMENT OF

IABOR & INDUSTRY

System Design and Blueprint

Version 2.4
for

UCMS Wage and Tax Applications
Support and Maintenance

Prepared for

Commonwealth of Pennsylvania
Department of Labor and Industry

April 8, 2016

International Business Machines Corporation

Revision History

REIGQSE/ Revision .
Version Author / Editor Summary of Changes
Information Date
1.2 07-18-07 Don Chavey Incorporated correction from 2" walkthrough
2.0 12-02-14 John Drabik Updated to reflect the UCMS production system
2.1 12-23-14 John Drabik Updated to incorporate comments from DLI
2.2 04-10-15 Bob Pratt Updated with Comments from DLI
2.3 03-03-16 Bob Pratt Revised to reflect new AEM Portal and other
product upgrades
24 04-08-16 Scott Nelson Revisions for AEM Portal, BPM, LiveCycle
migrations and other minor edits.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint — Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Table of Contents

0 o (oY [T3 4T Y o SR 1
1.1 PUTDOSE it a e e e e 1
1.2 RS ToT 0] oL PP TR PPPTPPPI 1
1.3 R EI BN CES . ————————— 1
1.4 L@ Y= YT SRR 2
2.0 GroUNA RUIBS .. 3
2.1 T o Yo [o3 o 1 o PSSR 3
2.2 ArChiteCtural PriNCIPIES ...t e e e e e e e e e e s e s snaaraeeeaaeeeenans 3
b4 N 1 1 (o o (1T 1[0 o KOS SRS 3
2.2.2 PrINCIPIES SUMMANYoiuiiiiieiiriiieeesteseei sttt a bbb b b ne s s 3
2.3 F N ol TN C=To (L= 1 D 1= o K= o o 5
22 04 R 1 1o o (1T 1o o 5
2.3.2 DECISIONS SUIMMIBIYeeuitinietiriieetesteneesestessesessessesessessesessesbesessesbesessesbe e ssesbe e ssesbensesesbesseneees 5
2.4 ArChiteCtUral STANTAITS ...uuuuveiiiiiiiiiiiiiiii e e e arebebabebstarsbsbabsrsasrsrsrsrsrsesrnrnnes 10
2 R 1 o o (1T 1o o SR 10
2.4.2 StandardS SUMMEBIYccccoieeiieeiiiesees e e e se s e e e saeesaeeseeeaesseesseeste e seentesneesseesaeesseenseensenns 11
3.0 SOIULION OVEIVIBW ..o 12
3.1 110 T LU o3 1 0) o 12
3.2 SYSTEM CONTEXT . oiiiiiitiiiie ittt s e e et e e et et r e e e e e s ee e tab s e e e e e e aesbnaeeeaeaenes 12
G070 N 4 1 (o o (VT i o] o KU OSSPSRt 12
3.2.2 System CONEXE DIAGIAM......ceiuiieeriiieterieeet sttt b et b et bbb s nennas 13
G T (=) g = 1 = 1] =SS 14
3.2.4 INtErfaCe SUMIMAIYcoiuieie ettt st s e s te e e s saeesbe e te e beentesatesaeesaeesaeenseennenns 19
3.3 Service-0Oriented ArChiteCtUIe ... 22
3.3 1 INTOTUCTION ..ttt st sae e be et e e e e ebeeebeesbe e beenbesaeesaeesaeesseenseennenns 22
3.3.2 SOA LAYEred MOUEL.........coiue ettt ettt et teste s e e saeesaeenseenneens 22
3.3.3 UCMS SOA IUSEIALION......ccueeeeeeeetieeteeseeeeie e s e sreesteesaeeaesseesreesteesseesesneesaeesaeesseenseensenns 24
3.3.4 UCMS CommMON MOUUIES........cceiiteeetieticite ettt ettt et e et et esbe e be e saeesaeesneeneenneens 25
3.3.5 SEIVICES IN SOA....o ettt ettt sbe e te e be et e e b e e be e be e beenbesatesaeesaeesreereenreans 25
3.3.6 SOA INFrASIUCIUIEc.eeeieeeie ettt st et ae e s b et ebeentesneesaeesaeesaeeneennenns 27
4.0 COmMPONENT AFCRITECTUIE ..oiiiieiii ettt et e e et e e e sbe e e e e sbbe e e e sbbeeeeans 30
4.1 Ta)d foTo LU Lw3 (1] s INUT PP PPPPPPPRPPPPPRt 30
4.1.1 UCMS Conceptual Component MOELcccoviriiiririieere e 32
4.1.2 UCMS Specification Component MOEl ... e 34
4.2 APPHCALION SEIVICES ..eiiiiiiiiie ittt e et e e e sttt e e e st et e e e snbbeeeeanbreeeeaas 35
B N [1 (o Yo [N (o2 1o o [P R R SORTO USSR 35
4.2.2 Configuration ManNAgEMENTcciieriririeieie ettt e ettt re e se b see b saesneeneas 38
4.2.3 MOAEI-VIEW-CONMIOIIETctieiecie ettt sre e ae e e eaeeereesraenreas 44
R B T L= B Ao o =11 RS 56
425 Caching 60
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System ii

System Design and Blueprint — Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.2.6 EXCEPON HANGINGooviiiiieiiiiiieieriee et 65
4.2.7 Logging 67
< T V13T o [T 74
4.2.9 Security 81
4.3 POTTAl SEIVICES ..ot e e e s ettt e e e e e e s e et e e e e e e e e e e e nnnbreaeaeaens 85
e 0t R [011 7o Lo (U 17 o I PP 85
4.3.2 COMPONENE OVEIVIEW....c.uecuieueeeeiestesteseeseeseessesestestesseeseesessessesaessessessesssessassessessessessenssenees 86
4.3.3 Key Concepts, Features and Capabilitiesccccveeeriererie i 89
VLo T 4 o A PRSPPI 90
ot R [011 7o Lo (U 17 o SO R 90
4.4.2 COMPONENT OVEIVIEW....cuecuieueeeeieseestesieeseeseessesesrestesseeseesessessesaessessessesssessessessessessessesssnnees 91
e = (U | 0 N o 1TSS 91
4.4.4 Key Concepts, Features and Capabilities ..o 96
4.5 ENTEIrPriSE SEIVICE BUS ..oiiiiiiiiieiiiiee ettt ettt 101
70t R [011 oo (Ui 1o o [T U TP PPURTORRTPURN 101
4.5.2 COMPONENT OVEIVIEW........cueeitieieeiesieieesteesteesteesseessessaesseesseesesssesessseesseessessseessesssessesssenns 102
453 Key Concepts, Features and Capabilities ... 104
4.6 BUSINESS RUIES ...ttt ettt e e e e et e e e e e e s e et e e e e e e s e e nnntenaeeeeens 107
G 0t R [g1 oo (0T 1T o [U PR PRURTORURPURN 107
4.6.2 COMPONENT OVEIVIEW......c.ueeitieieiiesieseesteesteesteesteassessaesseesseetesnsessessseesseessesssesnsessessesssenns 108
4.6.3 Key Concepts, Features and Capabilities ... 111
4.7 Document ManagemMENT.......cccoo oo 112
%t R [g1 o o (Ui 1o o [OOSR P R PT PP STORRPURN 112
4.7.2 COMPONENT OVEIVIEW........ueeiveeieeiesieeieeseesteesteesteessesseesseesteestesnsessssseesseesseessesssessessesssenns 113
4.7.3 Key Concepts, Features and Capabilities ... 115
4.8 Correspondence ManAgeMENT.......ocuuiiiiiuiiii ettt e e e ebe e e e s nnneeees 118
S 00 R 111 o o 1T 1T o SRS 118
4.8.2 COMPONENT OVEIVIEW........ueevieieeiesiaeseesteesteesteesteesaesseesseesseetesssessesseesseessessseessesssessenssenns 119
4.8.3 Key Concepts, Features and Capabilitiescccvveeeviieiiiiie e 124
4.9 [Ry=T oo] o A1 Yo [T PPOUPPP 126
e Bt R 111 o o o 1T o SRS 126
4.9.2 COMPONENT OVEIVIEW........ueevieieeieiieieesiee st esteesteessesseesseesseetessessseseesseesseessesssesssessenssenns 127
4.9.3 Key Concepts, Features and Capabilitiesccccoveeeeiieciiie e 132
4.10 Wage Functionality Component MOdel..........cc.ooiiiiiiiiiiiiii e 139
0 1 1 R g1 o [T 1T o SR 139
4.10.2 COMPONENT OVEIVIEW........ueeivieieeiesieeieesteesteesteesseassessaesseesteeteassesseseesseessessseessessessesssenns 140
4.10.3 Component RelAtiONSNIPS......ccviiieiee s e e nreens 141
4.10.4 ComMPONENE DESCIPLIONS.....c.citieeiiriiieierte ettt bbb 144
4.10.5 ComMPONENE INEEFACTION........ciriieeiiriiieiirie ettt st 145
411 Tax Component MO ... a e e eeeneeee 151
0 5 0 I [g1 o o 0T 1T o [OOSR 151
5.0 Data ArCRITECTUIE ..ttt ettt e e e e ettt e e e e e e s aba b e e e e e e e e e aannbbbeeeeaaeaeannns 152
51 Ta) (e To [¥To3 1o] o H PP RP P POTUPPRTRT 152
5,11 KEY ASSUMPLIONScviuiitiriiietirieietesteeete sttt ettt ebe b ee s b e st sb et sesse e esesbeseenesseseenes 152
5.1.2 KeEY REQUIFEIMENTS ...ttt sttt sttt nne e s 153
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System iii

System Design and Blueprint — Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

5.2 Data ArchiteCture FramMeEWOTKooi it e e e e eeeee s 153
5.3 High-Level Physical Data Archit@Cture ... 156
5.3/ 1 DAA STOTES ...ttt nre e ne s 157
5.3.2 Data Store CharacteristicsS and MappingScccevererererieeieesesieseseesesessesseesseseessessenns 161
54 Technical Data ArChitECIUIE.........uiiiiiie e 163
5.4.1 High AVAIADINTY......coiviiiiiieee s 163
L B 1= 1) (= gl == ToT0) =T Y 165
L I = T Tor (] o JF= T Lo =TT 0 1YY o S 166
5.4.4 Operational CONSIAEIALIONScccirviierririiieirieriee et snenens 166
6.0 Security & Privacy ArChITECTUIEiciiiiiiiiiie ettt e e sbeee e 170
6.1 T 4 oo [UYox 1o] o PSPPI 170
6.2 Security Design PrinCiplesooo i 170
6.3 Business-level Security REQUIrEMENTSccuiiiiiiiiiiiiiiiee e 172
6.4 Overarching Architectural DeCISIONS.......cccccecveiiiiiii 172
6.5 UCMS Conceptual Security ArchiteCturecoooooeiiiiii e, 173
6.6 UCMS Logical Security ArChit@CIUIEcooiiiiiiiiiiiee e 176
6.6.1 Policy ApPlICAtioN FOOLPIINT........ccceiriiieiriieeierteee e 179
6.7 UCMS Physical Security ArChit@CtUreccoooeeiiii i 180
L 0 R S 1Yo Y74] = 181
6.8 SECUNITY DESIGN .eiiiitiiiiiiitie ettt e e et e e e st bt e e e sbb e e e e anbbeeeeabreeeeans 184
B.8.1 IAENLILY SEIVICES ...ccviieiuiitiiiietirteet ettt bbb b b e s 184
6.8.2 Authentication and AUthOrZatioN SEIVICESccciiiirireriee e 186
6.8.3 Confidentiality and INtegrity SEIVICEScccvviviieiie e 190
6.8.4 Audit and LOGQING SEIVICEScveeeuiriiietiriiieieriereeie sttt sb e s s ssenes 191
7.0 OperatioNal ArCRITECTUIE ...ooi it e e e e et e e e e e e e s bbb e eeeaeeeanes 193
7.1 Ta Yo To [UTox 1o] o E TP PP PP POTPPPPRTRPN 193
74 05 R (o 1= o111 To= i o o 193
A8 R B 1= T 1 1 (1o] o [OOSR 193

7.1.3 Purpose 194
7.2 System Topology DiagramsS ... 195
7.2.1 Physical Infrastructure Topology Diagram...........cccoereerinieenenieienineesese e 195
7.2.2 Logical/Functional Infrastructure Topology Diagramceeereneereneieneneieneneens 197
7.3 NOAE DESCIIPLION e 200
7.3.1 IBM PSENHES HAIOWAIEceeceieeeeeteeetieteete ettt et et e sttt et ae e saeesneene s 200
7.3.2 IBM XSErIES HAIAWAIEeoueeneeieie ittt e st et ene e e e eneeneeneenns 201
7.4 CONNECLION DESCIIPLIONS ..coiiiiiiiiiiitiie ittt et e e et e e e e abbeeeeaas 202
A 5 T NN = A1 o T QS T/ o = 202
7.4.2 Network Firewalls and ROULETS..........cciiiiiiiiiie e 203
7.4.3 Storage Area Network (SAN) SWItChES ... s 203
7.5 Node-Deployment Unit MapPing.....cooi ittt 203
7.5.1 NOde-Deployment UNILS........c.ccoiiiiiirieieeieeeeee ettt et 204
7.6 MIAAIBWAI ...ttt e e e e e ettt e e e e e e e e st b e e e e e e e e e e snnbreeaaeaeas 204
7.7 WalKENTOUGRNS oot et e et e e e s baeeeeans 205
8.0 Systems Management ArChitECIUIEoo i 205
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System iv

System Design and Blueprint — Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

8.1 T e} (e Xo [0 To3 1o J o H PR PRRTR 205
8.1.1 Management CONSOIEScoi ittt sn e s 207

8.1.2 ManNagEMENT AQENLSoiiiiiiiiii ettt sttt st st st e b b esbe e sb e sne e sabeesaseesabeesbeeans 208

8.2 Systems Management Component MOdeEl........cccuvviveeiiiiiiiiiiiccee e 209
8.3 IBM Tivoli MoNitoring COMPONENTS......ciiiiiiieiiiiie ettt 210
8.3.1 Enterprise Monitoring Server (TEMS).......ccciiiririeireeeerieeese e 210

8.3.2 Tivoli Enterprise Portal Server (TEPS) ...t 211

8.3.3 Tivoli Enterprise Portal (TEP)ccoociieeieieiese st se e sae st s a e e s 211

8.3.4 Tivoli Enterprise Management Agent (TEMA).......cooo et 211

8.3.5 ITM Firewall Gateway FEALUIEcceiriiiririiieierieeete et 211

8.3.6 Tivoli Data WarehousSe (TDW)ccccvcvieeiieeeieeesiesie st se e e sse e see st sre e eseneesse e ns 212

8.4 ITCAM for Response Time Tracking COMPONENTSccvvveveeeeiiiiiiiieiree e csieiree e e e e 212
8.4.1 MaNAGEMENT SEIVETcuiiuiiiieieieete sttt r e e et sr e ae e nesnenre e 212

8.4.2 Store and FOrWArd AJENT...........coeiriieirieeeierierieie sttt b e eenes 212

8.4.3 ManNagEMENT AQENESeiiiiiiiiieeiie sttt sre e b sbe e s esbe e sabeesbe e sabeesaseesabeesareenns 213

8.5 ITCAM for Application DiagnosticS COMPONENTSuuiuiiimirieiiieiiinirinirieiniernrnrnn. 213
8.5.1 MaNAGEMENT SEIVETcoiiuiiuieieeete sttt e et er e e sr e re e 213

8.5.2 ManNagEMENT AQENTScviieeeiieieeee sttt e er e nr e re e 213

8.6 EXisting SOIUtion COMPONENTS ...ccccci i 213
8.6.1 TIVOI OMNIDUS ...ttt ettt e e b e sn e e e 213

8.6.2 IBM TIVOII NEIVIEWouvieiieieeieiese e sttt st ene e e e neesne e e 213

S TR TS 1T Vot N\ o S 214

8.7 o To (O T o J= T [0 I =T oo L =T oY 214
8.7.1 BaCKUP/RESIOIE SIrAtEUY ...veccveeeeereesieesieeiiestesesseesreesteesteeeeeee s e e esreeteseesaeesaeesaeenneenes 214

8.8 Change Control and Configuration Managementcccoooueeeiiiieee e 216
8.9 Performance and CapacCilycoocueeieiiiiiieiiiii e 217
8.10 Other Systems ManagemeNnt PrOCESSESiuuiiiiiiiiee ittt e st e e 218
LS IO 2N o o 1= T o = USRS 220
9.1 GlOSSArY Of ACTONYIMS c.oiiiiiiiiiiiie ittt ettt e e et b e e e abb e e e e sbreeeeans 220
9.2 Business and Support Walkthroughs ..., 222
9.2.1 BuUSINESS WalKtNrOUQRNSc.ociiiieieee et 222

9.2.2 System Support WalktroUghs ..o s 227
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System Vv

System Design and Blueprint — Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

1.0 Introduction

1.1 Purpose

This document serves as a reference for architectural decisions, principles, standards, and
component definitions for the UCMS project. It defines the key elements of the Unemployment
Compensation Management System (UCMS) architecture thereby serving as the basis for the
design and construction of UCMS applications In addition, this document describes the key
architectural components of the UCMS architecture and provides a comprehensive architectural
overview of the system. The primary purpose of the System Design & Blueprint is to document
and explain the key architectural design decisions and the impact of those decisions on the entire
solution.

The target audience is primarily technical developers and business analysts who need to
understand operational characteristics, or aspects of the associated infrastructure and solution to
maintain or enhance unemployment compensation operations.

Managers and senior non-technical staff may find that the document provides a glimpse into the
solution structure, and the many pieces and interrelationships involved in formulating the solution.

The UCMS application architecture is based on Service Oriented Architecture (SOA). The
primary goal of SOA is to align business needs with information technology in a way that makes it
more flexible and effective. SOA is an application architecture that allows business applications
to be decomposed into loosely-coupled functions and processes, referred to as services, which
can be reused and combined into SOA based applications. UCMS applications are implemented
as SOA based applications.

This update to the System Design Blueprint reflects the transition from a design-oriented
document, to a document focused on the as-built and as-delivered UCMS solution. Some in-
process functional and component changes are included and the document has been updated to
reflect the fact that UCMS is in the sustainment phase of its life cycle, where the focus is on
maintenance, enhancements and component upgrades.

1.2 Scope

The scope of this document is limited to the architecture of the production Unemployment
Compensation Modernization System primarily focused on Wage and Tax business functions.

The document scope includes some architectural components and systems that are the
responsibility of the Department of Labor and Industry (DLI) as shared components or are the
responsibility of the Office of Administration/Office of Information Technology (OA/OIT) and are
shared with other Commonwealth of PA programs.

As a blueprint, this document is intended to provide technical personnel with an overarching view
of the UCMS solution. DLI personnel with knowledge of the as-implemented components and
functions should keep this document up to date to reflect as-is characteristics, on an ongoing
basis as the solution components and infrastructure are updated or changed.

1.3 References

The following documents were referenced in the original System Design & Blueprint:

e DLI Systems Management Plan

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 1
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Architectural Decisions are located in the Rational ClearCase repository for the PA UCMS
project.

1.4 Overview

The Design Blueprint defines architectural principles, decisions and standards, used to design
and develop the UCMS suite of applications. The purpose of this document is to define the
ground rules and scope of the architecture while capturing details associated with key
architectural decisions, including updates reflecting changes since the original Blueprint release.
The initial sections of the document define the architecture principles and decisions which
constituted the ground rules for the project design.

In addition to the ground rules, the scope of the architecture is further defined by use of the
system context. A system context diagram is provided to identify the external systems,
information, and control flows required by UCMS applications and crossing UCMS system
boundaries. A thorough review of the solution context is a prerequisite for fully understanding the
UCMS solution. The System Context diagram also provides some insight into the business and
shared infrastructure implementation complexity and its reflection in the UCMS design and
implementation.

UCMS applications are designed and implemented as a suite of SOA based applications and
services. The implications of SOA on the overall architecture are discussed with an emphasis on
how SOA applies to UCMS, and how the SOA layers map to different components of the
architecture including the infrastructure required to support SOA applications. An example is
provided that describes how SOA Services in Release 0 Common Modules, served as the
foundation for subsequent UCMS application releases R1 and R2 (Wage and Tax).

A significant portion of the document is focused on the definition and integration of architectural
components defined in the UCMS Component Model. The UCMS Component Model describes
the components for each release in terms of their responsibilities, interfaces, relationships, and
collaboration to provide business functionality. It describes the specifications for key architecture
components such as the Portal, the Enterprise Service Bus (ESB), Workflow/Choreography,
Document Management, Correspondence Management, and Reporting. In addition, the UCMS
Framework is discussed to describe how framework components in general are used to
implement UCMS applications and application services.

In addition to the SOA architecture, the UCMS Enterprise Data, Security, and Operations
Architectures are discussed. The Enterprise Data Architecture addresses the data stores, data
flows and infrastructure configurations required to support application data requirements. The
Security Architecture defines the principles of information security and describes how they are
applied. The UCMS Operational Architecture describes the physical infrastructure required to
support and deploy UCMS application and service solutions. Since the time UCMS was designed
there have been solution changes including changes driven by legislative changes, business
enhancements and updates to address growth and complexity of certain record types that are
discussed in this document.

The UCMS systems management strategy is also discussed to describe how UCMS
infrastructure, systems, and applications components are designed to be proactively monitored
and managed to achieve system service levels as they are defined. A detailed management
approach to establishing and managing system service levels has not been formally established
by DLI, leaving the objectives described in the system design to be to be viewed primarily as
guidelines.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 2
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

2.0

Ground Rules

2.1 Introduction

The UCMS architecture embodies a set of high-level principles, key design decisions and
adherence to recognized technical standards. High-level principles establish an architectural
vision of UCMS and create a common understanding of the desired characteristics of the system
by capturing the fundamental axioms about the system as it was designed. Key technology and
business decisions impact the overall design and implementation of UCMS while providing a
mechanism for enforcing and managing adherence to standards. Recognized technical
standards are used to promote a consistent use of technology and provide a guide for
organizations to follow and document any pre-determined technology components and
regulations that must be utilized.

2.2 Architectural Principles

2.2.1 Introduction

Architecture Principles define the general rules and guidelines that were used by UCMS business
and technical teams to define the overall architecture and design of UCMS applications. Each
Principle includes a statement describing the associated benefits and implications.

¢ The benefit statements highlight the value of implementing the principle.
e The implication statements outline the impact of the principle.

Principles are used to capture the fundamental, underlying aspects of the system. Architecture
principles provide the following benefits:

e Provide an effective framework within which the business managers can make conscious
decisions about the business, its management style and structure and how it
uses/implements Information Technology.

e Act as a guide to establishing relevant evaluation criteria, and exert a strong influence on the
overall system design including the selection of vendor products and services.

e Serve as drivers for scoping and defining both functional and non-functional requirements of
the system.

e Help identify transition activities needed to implement new technology in support of business
and technology goals, including modernization efforts such as those in the Product and
Architecture and Infrastructure Modernization Roadmaps.

e Provide benefit statements as a basis for analyzing proposed decisions and related activities.

Implication statements describe the impact on the business and technology for each principle.
Principles provide valuable information that is useful during transition initiatives and planning
activities resulting from the implementation of a principle.

2.2.2 Principles Summary

The following table summarizes the Architectural Principles for the UCMS project. These
principles are a combination of IBM best practices, original RFP requirements and items included
in the original RFP response.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Principle

Use Proven
Architecture and
Design Standards.

Benefits

Increases overall system reliability and
stability.

Implications

Mitigates technology risks
thereby reducing overall
solution costs.

Use Proven Application
Architecture, Design,
and Implementation
Patterns.

Increases reuse of application code
and operational designs.

Reduces design, development, and
implementation time.

Reduces maintenance
time and costs.

Increases UCMS systems
reliability and stability.

Use Proven
Architecture and
Design Methodologies
(RUP, GSMethod,

Defines a common set of methods and
processes used for requirements
capture, solution architecture and
design, operations/infrastructure

Increases the quality of
UCMS system
requirements, design, and
testing.

SOMA). design, testing, and solution package
and deployment.
The UCMS Services conform to a formal contract Reduces the time and

Architecture adheres to
the key principles of a
Services Oriented
Architecture (SOA).

which is the only part of the service that
is exposed to external application.

Services are loosely coupled, reusable,
composable, and stateless.

Services are autonomous with
encapsulated business logic.

costs required to
implement enterprise
applications.

Increases the reliability
and stability of enterprise
applications.

Implement Security
solutions that provide
the appropriate level of
security controls based
on UCMS business
and technology
objectives.

Enables confidential exchange of
information within DLI and external
partners.

Maintains the integrity of UCMS
systems

Secures the storage and integrity of
UCMS data.

Allows for authentication
and authorization of users’
access to UCMS systems,
applications, and data.

A standards compliant
portal is used to
provide aggregation
and collaboration
services for UCMS
users.

Simplifies the design and
implementation of UCMS user
interfaces that require content
aggregation and user collaborations.

Provides UCMS users with
a single personalized
interface to UCMS
applications and content.

The UCMS
architecture is
designed to be highly
available.

Minimizes the potential for system
failures and outages.

Allows implementation of a
rigorous service level
management system.

The UCMS technical
architecture is flexible
and scalable to allow
for future
enhancements in
application
performance and

Allows network, hardware, and system
software to be easily reconfigured to
increase overall system performance.

Mitigates overall system
performance risks.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Principle Benefits Implications

availability.
Virtualize network Virtualization of the network provides Improves service quality.
services and use multiple solutions for centralizing
automated services and security policies while
provisioning. preserving the availability,

manageability, security, and scalability

benefits of the existing design.
Under-utilized Allows applications to scale using Where possible, leverage
computing and storage | existing servers and systems. excess capacity on
resources and existing servers to scale
virtualized distributed UCMS applications.
environments should
be used to improve the
efficiency and usage of
IT resources.

2.3 Architectural Decisions

2.3.1 Introduction

Architectural Decisions document technology and business decisions that affect system design
and implementation strategies. These decisions impact the overall structure of the solution while
providing a mechanism for enforcing and managing adherence to standards.

A solution architecture can be understood, partly, by examining the decisions made during its
design and implementation. The justification and evaluation criteria are recorded with each
decision or by reference to more general architecture principles, policies, or guidelines.

The purposes of Architectural Decisions are to:
e Provide a single place to document architectural decisions for future reference.
¢ Document rationale and justification for decisions.

e Preserve the integrity and ensure the consistency of the overall system architecture and
design.

e Ensure that the architecture is extensible and can support future system requirements.
¢ Provide a reference of documented decisions for new people who join the project.

¢ Avoid unnecessary reconsideration of the same issues.

2.3.2 Decisions Summary

The following table summarizes the Architectural Decisions underlying the UCMS design. More
details, including assumptions, alternatives, and decision justifications can be found in the
Rational ClearCase repository at, \lihbg000wwc1\Deliverables\Deliverables\Architecture\Arch
Decisions\2007.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 5
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

file://///lihbg000wwc1/Deliverables/Deliverables/Architecture/Arch%20Decisions/2007
file://///lihbg000wwc1/Deliverables/Deliverables/Architecture/Arch%20Decisions/2007

Architectural
Questions

Architectural Decisions

Status

AD-1 Which Rules Use Corticon Business Rules for Final
Engine should the | pranching decision making needs in
Process Server process server.
(workflow) use for
workflow
management?
AD-4 What mechanism | Use WebMethods UDDI for describing Final
must be used for and publishing service descriptions.
describing and
publishing the
service
descriptions?
AD-5 How should the Manual Discovery and Static Binding: Final
services be The service descriptions are down-
discovered by the | loaded from the registry manually (e.qg.,
service requestor? | FTP) and used to generate bindings.
The bindings invoke the services based
on the service specification and
implementation details such as location,
the desired format and protocol. The
client side code for invoking the service
is linked with the requesting application
code.
AD-6 What should be Coarse grained for consumers outside of | Final
the granularity of the application and fine grained for
the service within consumers within the application.
the solution?
AD-9 Service bindings Static bindings discover and bind to Final
can be either services at design/build time.
Static or Dynamic.
Shall application
components
discover and bind
to services at
design/build time
(Static) or at run
time (Dynamic)?
AD-10 | Method to version | A versionStatus() operation allows Final
published services | consumers to develop their own method
and provides of monitoring a service. Also,
notification of standardize on all web service
version changes. responses including a standard set of
response elements within a single status
response element to provide
acknowledgment of the response, the
version, a deprecated notice, and an
error Code.
AD-12 | Specify the Use the Document/Literal wrapped Final
message style to message style as the preferred method.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

AD_ID | Architectural Architectural Decisions
Questions
use when Use RPCl/Literal only in cases where

authoring WSDL operation overloading is required.

AD-13 | Method to identify | Version the WSDL using the

the version of a targetNamespace and use major version
published service. | numbering scheme. Minor versions are
not indicated in the targetNamespace as
it is assumed they would be fully
backwards compatible as the primary
means of version identification.
Alternatives are used when versions of
the invoked provider services change,
but the facade service on the ESB has
not changed

AD-14 | Specifications for | WS-I Basic Profile v1 which incorporates
web services the following specifications by reference:

e Simple Object Access Protocol
version 1.1 (SOAP v1.1)

o Attachments for SOAP
Messages are used to
carry binary objects

e Hypertext Transfer Protocol
(HTTP v1.1)

o Application-level
protocol for distributed,
collaborative,
hypermedia information
systems

e Web Services Description
Language version 1.1 (WSDL
v1.1)

o WSDLs are broken into
three separate physical

artifacts:
= Service
Interface
Description
(wsdl:types,

wsdl:message &
wsdl:portType)

= Service Binding
Description
(wsdl:binding)

= Service
Implementation
Description
(wsdl:service)

Status

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

AD_ID

Architectural
Questions

Architectural Decisions

o Uses flat data type
definitions to avoid
interoperability issues

o Reuses existing
WSDL/XML
vocabularies ranging
from data type
definitions to complete
service definitions

e Universal Description ,
Discovery and Integration
version 2.0 (UDDI v2.0)

o Both a Production and
Development UDDI
Registry are used

o eXtensible Markup Language
version 1.0 (XML v1.0)

¢ XML Schema

http://www.ws-
i.org/deliverables/workinggroup.aspx?wg

=basicprofile

Status

specification or
vendor API’s be
used to implement
UCMS Portlets?

AD-20 | What mechanism External partners could connect to the Recommended,
will be used to ESB via webMethods Trading Networks | but not
expose services Server using HTTP/S, FTP/S, or SMTP implemented
and to protocols. Based on their business
interconnect with documents (XML, EDI) exchange,
external partners? | appropriate Processing Rules in the

Trading Networks Server would be set
up to handle the request and deliver the
documents in return. The Processing
rules would be responsible for invoking
services/calls to DLI Enterprise Systems
and UCMS.

AD-23 | What mechanism | Web services use HTTP for synchronous | Final
will be used to communications.
implement the Web services use JMS for asynchronous
communication communications.

Interaction Service Provider Interfaces and
between the protocols are used for Non Web services
service requestor | on an as-needed basis.
and the service
provider?
AD-25 | Will the JSR-168 All UCMS portlets will conform to JSR- Final

168 specifications. Vendor-specific API
features will not be used.

JSR 168 is a Java Specification Request
that establishes a standard API for

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Architectural
Questions

Architectural Decisions

Status

creating portlets. JSR 168 is designed to
achieve interoperability between portlets,
Java-based portal servers, and other
Web applications.

OPS-2 | What mechanism Implement compensation logic as a Recommended,
will be used to service within the ESB (part of but not
compensate for mediation) and code compensation implemented
failing within applications.
components?

OPS-3 | Document the ASM Storage for Oracle will be Einal
Oracle storage implemented, running on AIX with SAN
management LUNSs.
decision for the
Oracle
Environment on
AIX Servers.

OPS-5 | What is the scope | A UCMS-specific RMAN catalog is Final
of systems within implemented on an AIX Oracle instance
the enterprise that | running in its own LPAR.
will be supported
by a single RMAN
database

OPS-6 | What technology Server virtualization is implemented to Einal
should be used to | provide variable consumption needs.
optimize server VMWare is leveraged to virtualize
resources? servers in the Intel environment.

POWERTY pSeries servers running AlX
v6 provide virtualization for servers in the
UNIX environment.

OPs-7 | Document the ASM Storage for Oracle is implemented | Final
Oracle storage for the AIX environment.
management
decision for the
Oracle
Environment
supporting on AIX
Servers

OPSs-8 | Document the The Rational environment uses Oracle Einal
Oracle storage Managed Files. ASM remains the
management strategic direction.
decision for the
Rational
Environment.

OPS-9 | What technology Storage is provided via an IBM Final
should be used to | TotalStorage DS8300 and XIV. Storage
optimize storage Virtualization utilizing SVC is being
resources? implemented by DLI.

OPS- How will the IBM VIO is used for networking and storage. Final

11 System p Those LPARs expected to have high
Advanced Power levels of external 1/0O (networking or
Virtualization storage). Physical adapters are available

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

AD_ID | Architectural Architectural Decisions Status
Questions

hardware features | if required.
be utilized?

Status Classification

Decision Status

Not ready for review

Proposed for discussion amongst the Actionable

UCMS Architecture Team

Ready for review by IBM and DLI Recommended, but not implemented
Final decision will not be made for now Tabled

Final decision has been provided by DLI Final

2.4 Architectural Standards

2.4.1 Introduction

The UCMS Architectural Standards in this section describe the agreed upon standards that were
utilized in UCMS Solutions Architecture. Standards are “policy” level statements that provide an
auditable exception process for deviations. Policies and standards are sets of “rules” that define
how specific technologies and methodologies will be used. A standard can be defined as
something with a pre-described specification, that is measurable, recognized as having
authoritative value, and which is implemented on the basis of best practices.

The following Standards were defined for UCMS:
e Technology Standards.

Application Development Standards.

Security Standards.
Database Standards.
SOA Standards.

Standards are used:

e To promote consistent and effective implementation of organization technology standards,
policies, architectures and regulations.

e As a guide for organizations to follow to meet objectives (e.g., Security standards guide an
organization in meeting security objectives).

e To document any pre-determined technology components and regulations that must be
utilized to define new application architectures within the Enterprise.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 10
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

2.4.2 Standards Summary

The following table summarizes the UCMS Architectural Standards.

Aea Sandad
Application Java based components adhere to J2EE / J2SE 1.7 (JMS 1.1, JCA 1.5,
Standards EJB 2.0, JDBC 2.0)

Accessibility Combine Federal Section 508 Accessibility Criteria with W3C WCAG 1.0
Standards Priority 1 Guidelines.

Web Services | Web Services are compliant with WS-I Basic Profile 1.1. WS-I Basic
Interoperability | Profile 1.1 includes:

e Simple Object Access Protocol version 1.1 (SOAP v1.1)

o Attachments for SOAP Messages are used to carry
binary objects

e Hypertext Transfer Protocol (HTTP v1.1)

o Application-level protocol for distributed, collaborative,
hypermedia information systems

e Web Services Description Language version 1.1 (WSDL v1.1)

o The WSDLs are broken into three separate physical
artifacts:

= Service Interface Description (wsdl:types,
wsdl:message & wsdl:portType)

= Service Binding Description (wsdl:binding)

= Service Implementation Description
(wsdl:service)

o Use flat data type definitions to avoid interoperability
issues

o Reuse existing WSDL/XML vocabularies ranging from
data type definitions to complete service definitions

e Universal Description , Discovery and Integration version 2.0

(UDDI v2.0)
o Both a Production and Development UDDI Registry are
used

e eXtensible Markup Language version 1.0 (XML v1.0)
e XML Schema

More information regarding the WS-I Basic Profile 1.1 can be found at
http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

Portal JSR-168
Applications

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

11

http://www.ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile

3.0

Solution Overview

3.1 Introduction

This section provides the overview of the solution by first introducing the UCMS System Context
Diagram. The System Context clarifies and confirms the operating environment for the system by
listing the entities external to UCMS that interact with UCMS. Following the system context is an
overview of service-oriented architecture (SOA), the pieces of a SOA infrastructure and how it is
utilized for UCMS.

3.2 System Context

3.2.1 Introduction

The System Context represents the entire system as a single object or process and identifies the
interfaces between the system and external entities. Usually shown as a diagram, this
representation defines the system and identifies the information and control flows that cross the
system boundary. For UCMS, the Wage and Tax Context diagram (in a later section) should be
used for as-is context information.

The System Context highlights several important characteristics of the system: users, external
systems, batch inputs and outputs, and external devices. It also depicts:

o External events to which the system must or should respond.

e Events that the system generates that may affect external entities.

o Data that the system receives from the outside world that should be processed in some way.
e Data produced by the system and sent to the outside world.

Objects within the system boundary define the scope over which the development team has
some control. Usually, the users and systems represented in the system context diagram are
outside the boundary of the system and affect the system operation and development but are
beyond the control of the developers within the currently defined scope of the project. However,
for the sake of completeness, the following entities are called-out in the system context diagram:

o Field Auditors — The tax field audit application has not been used as part of UCMS but is
included in the UCMS code base.

The purpose of the System Context is:
e To clarify and confirm the environment in which the system has to operate.

e To provide the details at an adequate level to allow the creation of the relevant technical
specification(s).

The UCMS System Context Diagram is shown on the next page, followed by descriptions of the
external entities with which UCMS interacts

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 12
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

3.2.2 System Context Diagram

.é >

UC, TEUC, TRA, <

DUA Check Recards
usnOL

Ben&as uc

Diwect Deposd

S Dat \ \ Stats PAO&BI
Crad Supsort -

\
4

ew Hare Data
Viage Recosd Data’

Caid Supec

Deducsons
New Hre, Neer-

‘ Catz

Indid Cisi
Data

Habonal Directony
Of Hew Hires

CeAAData
Extract

Feid Auditors

:mavyv Cmrcerﬁz/-.

Verficaton / PADOR

uc2, ué2a Inlerstak inqures
Remittance Datz

ntessae
Chamges

inlerstate
Beneft Applicatons

Y

* Via IO

Bectronc
Payment Data

PA New Hires Data Prerotes

ACH Credits & Detas

Liquor License
Renemal informaton

Emgloyer infosvation

Wage anc

PLCE

eparabor,
HCTC<cighle Daa
Camat R;
FUTA Cert A5

New Employer

Lead infc

PADGS

Federal Claims
. Confrol Cenfter

Figure 3.2-1: UCMS System Context Diagram

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

13

3.2.3 External Entities

The sections that follow list information regarding the external entities that interact with UCMS.
Some statistical information was provided by DLI and in some case no information was available.
No formal process exists for verifying statistics from external entities.

3.2.3.1 Bureau of Workers’ Compensation (BWC)

The Bureau of Workers’ Compensation was established to carry out the provisions of the
Workers’ Compensation Act and related legislation and for fulfilling the overall purpose of
Pennsylvania’s workers’ compensation system.

Description Daily New Hires File Processing. The New Hires daily files are sent to the
State Workers’ Insurance Fund (SWIF) within BWC for cross-matching (and
possible fraud detection) against workers’ compensation claims.
New/Updated Employer Registration Process. UC Employer Registration
is shared with BWC. New and updated employer registration data is passed
to BWC.

Number of users

Number of transactions

Frequency of Both. Once per processing day

transactions

Volume of data New Hires - Depends on number of new hires processed.

New/Updated Employers — Depends on humber of new/updated employer
registrations processed.

Owner PA Department of Labor and Industry (DLI)

3.2.3.2 CWIA Data Mart Extract File

Under the Deputy Secretary for Workforce Development, the Center for Workforce Information
and Analysis (CWIA) produces economic and labor market information to provide timely data and
analyses related to Pennsylvania’s workers and employers. In addition, CWIA provides reporting
and research support to the UC program.

Description Several times during a quarter employer and wage data is requested by
CWIA. The data is extracted from UCMS records and transmitted to a site
designated by CWIA. CWIA takes the file and loads it into their data mart.
The loading of the data file into the CWIA Data Mart is not in scope of this
project.

Number of users

Number of transactions

Frequency of Manual request (several times quarterly)
transactions

Volume of data

Owner CWIA

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

14

3.2.3.3 Employers and Third Party Administrators (TPAS)
Employers and TPAs who have a need to interact with the UC programs.

Description

As users of the system, Employers and TPAs can:
e Remit quarterly UC tax payments
e Request Employer Charge information
e Perform general inquiries

Number of users

280,000+

Number of transactions

e 20,000 demographic data changes/year
e 4,000 inquiries/month (primarily telephone)
e approximately 300,000 quarterly reports

Frequency of
transactions

Daily

Volume of data

Owner

Employer, TPA or UC Program

3.2.3.4 Federal Claims Control Center (FCCC)
The FCCC system is used for obtaining wage and separation information for both UCX and

UCFW programs.

Description

The FCCC system is used for obtaining wage and separation information for
both Unemployment Compensation for Ex-service members (UCX) and
Unemployment Compensation for Federal Employees (UCFE) programs.
The system uses the ICON system to generate this request.

Number of users

Number of transactions

Frequency of
transactions

Volume of data

Owner

US Department of Labor (USDOL)

3.2.3.5 Field Auditors (Tax Agents)

DLI Employees who work for the Field Accounting Service (FAS) which audits employers
(approximately 5,000 per year) in order to discover under/overpaid taxes, unreported employees
and/or previously missing wages and other compliance-related issues. While the associated data
is kept by UCMS, the Field Audit functionality has not been deployed.

transactions

Description Field Auditors can download case data and update case data and audit
papers that will be uploaded to the central database.

Number of users 175

Number of transactions 5,500 audits/year

Frequency of Daily

Volume of data

15 - 30 pages per audit.

Owner

UCTS

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 15
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

3.2.3.6 Integrated Enterprise System (IES)

Formerly called ImaginePA, Integrated Enterprise System (IES) is the Commonwealth of
Pennsylvania's (CoPA) project to streamline and standardize key business processes in:

e Accounting

e Budgeting

e Payroll

e Human Resources
e Procurement

The CoPA chose mySAP.com Enterprise Resource Planning (ERP) software.

Description Accounting data is extracted, formatted and passed to the Commonwealth’s
IES SAP system. A format was developed that conforms to the SAP chart of
accounts. SAP processes these records using transaction FB50, Enter GL
Account Document. This is a double-entry accounting transaction that
simultaneously updates the SAP general ledger, the FM budgetary ledger for
availability control and the CO (Control) cost accounting ledger for
management reporting. All SAP financial documents are originally recorded
on a GAAP basis, fully compliant with FASB and GASB standards.

Number of users

Number of transactions

Frequency of Daily
transactions

Volume of data

Owner Commonwealth of Pennsylvania (CoPA)

3.2.3.7 Office of the Budget

The Secretary of Budget has overall responsibility for maintenance of the Commonwealth's
uniform accounting, payroll and financial reporting systems. The Commonwealth Comptroller falls
organizationally under the Office of the Budget and provides assistance to the Secretary of the
Budget in the development, implementation, maintenance, review, monitoring and control of
uniform accounting, payroll, auditing, operating and financial reporting policies, procedures and
systems. For UCMS purposes, the comptroller’s office serves as a liaison between the UC
program and Treasury to maintain the UC Trust fund and interact with the Federal UC
accounting.

Description Liaison between the UC program and Treasury to maintain the UC Trust
fund and interact with the Federal UC Accounting.

Number of users 5-10

Number of transactions e 700 dishonored remittances/year

e 900 fund transfers/year
e daily IC Tax deposit

Frequency of Daily
transactions

Volume of data

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 16
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

3.2.3.8 PA Department of General Services (DGS)
DGS administers the Contractor Responsibility Program for which UCTS issues clearances.

Description DGS administers the Contractor Responsibility Program for which UCTS
issues clearances.

Number of users 4

Number of transactions 1.2 million yearly

Frequency of weekly

transactions

Volume of data

Owner DGS

3.2.3.9 PA Department of Revenue (DOR)

The PA Department of Revenue is responsible for administering the tax laws of the
Commonwealth in a fair and equitable manner.

The Department is responsible for collecting Personal Income Tax, Sales and Use Tax, all
corporate taxes, Inheritance Tax, Realty Transfer Tax, Motor Fuel Taxes, and all other state
taxes. In addition, the Department collects the Local Sales Tax for Allegheny and Philadelphia
counties, the Public Transportation Assistance (PTA) Tax, and funds for the Pennsylvania
Intergovernmental Cooperation Authority (PICA).

Description

UC-2/UC-2A Remittance Data
UCTS receives daily data and image files for employer quarterly tax and
wage reports filed (UC-2/2A) and remittances received.

Clearance Information

UCTS receives data files containing applications for new licenses, license
renewals or license reinstatements of Sales, Use and Hotel Occupancy Tax
and Small Games of Chance. OIT indicates on the file whether the applicant
is delinquent, and returns the file to DOR.

Number of users

UC2/UC-2A Remittance Data — N/A
Clearance Information — 4

Number of transactions

UC-2, Remittance only
e 1,300,000 data items/year
e 5,000,000 images/year

Clearance Information
e Sales Tax — 8,500/year
e Small Games — 50/year

Frequency of
transactions

UC-2/UC-2A Remittances — Daily
Clearance Information — Weekly

Volume of data

UC-2/UC-2A Remittances
e Each UC-2 has 1 line item, and there could be from 2 — 4 images
per UC-2.

Owner

DOR

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 17
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

3.2.3.10PA Department of Treasury

The Treasury Department is responsible for accounting for financial transactions between the
departments and other external parties, including the federal government and financial
institutions. The process for making payments begins with individual state agencies preparing
requisitions that are submitted to Treasury. These requisitions are then audited by the Treasury
Department in accordance with generally accepted auditing standards.

Additionally, for UCTS purposes, Treasury is responsible for the safe keeping of collateral
instruments. They also control and perform the accounting for commonwealth issued checks,
including preparation of UC tax refund checks.

Description

1. Daily and quarterly transmission of UC Tax refunds to employers.
2. UC Disbursements:
e Daily transmission of all check records for UC, TEUC, TRA, DUA.
e Daily FTP of UC Claimant's Direct Deposit UC check data to
Treasury’s Oracle database.
e Daily transmission of total amount of funds to be allocated to Child
Support.

Number of users

5

Number of transactions

19,000 tax refunds/year

Frequency of
transactions

Daily, Quarterly

Volume of data

Owner

PA Department of Treasury

3.2.3.11PA Liquor Control Board (PLCB)
The LCB issues liquor licenses and renewals for which UCTS issues clearances.

Description The PLCB issues liquor licenses and renewals for which UCTS issues
clearances.

Number of users 4

Number of transactions 21,000 per year

Frequency of Weekly

transactions

Volume of data

Owner PLCB

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

18

3.2.3.12PNC Bank

PNC Bank is a subsidiary of PNC Financial Services Group, Inc. PNC Financial Services Group,
Inc. is a U.S. based financial services corporation, with operations including a regional banking
franchise operating primarily in eight states and the District of Columbia, specialized financial
businesses serving companies, government entities, and leading asset management and
processing businesses.

Description Each day a file is sent to PNC Bank via FTP that contains electronic banking
information such as prenotes and ACH credits. In return, PNC bank sends
payments records that the bank processed that day.

Number of users 4
Number of transactions Approx. 40,000/quarter
Frequency of Daily

transactions
Volume of data
Owner PNC Financial Services Group, Inc.

3.2.3.13US Department of Labor (USDOL)

The U.S. Department of Labor administers a variety of Federal labor laws including those that
guarantee workers’ rights to safe and healthful working conditions; a minimum hourly wage and
overtime pay; freedom from employment discrimination; unemployment insurance; and other
income support.

Description DLI must meet all USDOL reporting requirements for Data Validation, Ul
Performs and workforce measurements.

Number of users 5

Number of transactions

Frequency of Yearly, Monthly, Quarterly and On Demand

transactions
Volume of data
Owner USDOL

3.2.4 Interface Summary

The interfaces shown in the System Context diagram are summarized in the following table. For
specific details on any of the interfaces, refer to the Interface Control Document(s) for that system
or interface.

Source Destination Interface Type of Exchange
Control
DOR UCMS R2INT10 Scanned checks and vouchers
DOR UCMS R2INT25 List of payments received
DOR UCMS R3INT227 Correspondence
OPC UCMS R2INT22 Credit Card payment info
PNC UCMS R2INT3 ACH Debits and Credits
PNC UCMS R2INT24 Rejected employer info
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 19

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Source Destination Interface Type of Exchange

Control
LEXIS-NEXIS UCMS R2INT19 Bankruptcy information
Treasury UCMS R2INT7 Escheats
Bulk Pre-filer UCMS R2INT34 TPA pre-file information
Legacy Benefit UCMS R2INT9 Benefit charges
IRS UCMS R2INT26 Employer / FEIN changes
IRS UCMS R2INT27 FUTA certification and FEIN updates
Bulk filers UCMS R2INT21 UC-2, 2A, 2X, 2AX filing data
DGS UCMS R2INT23 Employer compliance and certification
IRS UCMS R2INT16 1099 annual information
File upload UCMS R2INT66 UC-2 and other data, bulk load via file
OA UCMS R2INT1 Registrations and information
IES SAP UCMS R2INTS Refunds and rollups
OPC UCMS R2INT30 Credit card information
IAM UCMS R2INT36, Identity Management interfaces
R2INT37, (internal), and identity confirmation
R2INT38,
R2INT39,
R2INT40,
R2INT41,
R2INT42,
R2INT43,
R2INT44,
R2INT57,
R2INT58,
R2INT59,
R2INT60,
R2INT61,
R2INT62
External agencies | UCMS R2INT54 RICS/BLIX information
QAS UCMS R2INT64 Verify responses
UCMS PNC R2INT2 Payment information
UCMS LEXIS-NEXIS R3INT174 Delinquency information
UCMS Bulk pre-filer R2INT33 Pre-file ACK with rates
UCMS Bulk filers R2INT31 UC-2/2X bulk data
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 20

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Source

Destination

Interface
Control

Type of Exchange

UCMS DGS R2INT28 Compliance information
UCMS DOL R2INT4, ETA 581, 204, and subset data
R2INTA45,
R2INT46,
R2INT47,
R2INTA48,
R2INT49,
R2INT50,
R2INT51,
R2INT52
UCMS CWIA R2INT11 New employers information
UCMS IRS R2INT15 FUTA certification and employer info
UCMS BWC R2INT20 PA100 information
UCMS Legacy Benefits | R2INT32 Solvency fees and status
UCMS Legacy R2INT65 Employer information
Employer Info
UCMS SAP R2INT6 Refunds
UCMS External R2INT17 RICS/BLIX information
agencies
UCMS OPC R2INT29 Credit card information
UCMS SAP R2INT53 Rollups
UCMS QAS R2INT63 Address verification information

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

21

3.3 Service-Oriented Architecture

3.3.1 Introduction

The primary goal of Service Oriented Architecture (SOA) is to align the business world with the
world of information technology (IT) in a way that makes both more effective. SOA is a bridge that
creates a synergistic relationship between the two that is more powerful and valuable than
anything experienced in the past. Moreover, SOA is focused on the business results that can be
achieved from having better alignment between the business and IT.

SOA starts from the premise that all businesses have a business design — the processes it
performs, the organizational structure of its people and finances, its near- and long-term goals
and objectives, the rules and policies that condition how it operates. The key idea extending from
this is that, if the business design can be directly transcribed and implemented in a highly
adaptable and dynamic way, there is then tremendous potential to drive changes into the
information system at the rate and pace of change in the business design.

This thinking is not new, but the capability to actually implement it is new. It required the arrival of
several enabling technologies, including Web services, Business Process Execution Language
(BPEL), and the enterprise service bus (ESB).

In this section, SOA is made more tangible by looking at how it is done in a logical sense, via the
SOA layers model, and by quantifying the services in SOA. An example using a UCMS-specific
scenario is employed to illustrate the usage of the SOA Layers and services. Then, how a set of
SOA-based common services, also known as the UCMS Common Modules, serves as the
foundation for all other releases are discussed. Lastly, the implementation of the IBM SOA
Reference Architecture for UCMS is described.

3.3.2 SOA Layered Model

From a technical standpoint, Service-Oriented Architecture is an architectural style for creating an
Enterprise IT Architecture that exploits the principles of service orientation to achieve a tighter
relationship between the business and the information systems that support the business.

At its simplest, it can be said that a SOA must contain three key elements. The following figure
illustrates a basic SOA model and the set of key elements that are required for this design style.

Service
Registry
(UDDI)

Publish

Service
Provider

Service
Requestor

Figure 3.3-1: Basic SOA Model

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 22
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The service providers are systems that offer a computing function that is made available to
service requestors. The common way a provider’s service is made available is through a service
registry. The process of making the service available to the service registry is called publishing.
The registry is typically some form of a repository that contains a listing of all of the services
available and the necessary information to invoke the service. The repository usually contains a
service description or some metadata about the service. The service description provides the
necessary information for invoking the service and any other conditions for its use (API’s,
message structures, interface definitions, qualities of service, etc).

A more advanced SOA model can be seen in the following figure. In this diagram, the layers of a
SOA are depicted.

p—

JService Portlet WSRP B2B Other

Consumers

‘Anoeg ‘sod

ysesju| Bupioyuop

Figure 3.3-2: Layers of SOA

Layer 1 is the operational systems. This layer contains existing systems that may be leveraged
in the creation of services. This layer is used to integrate with legacy applications in between the
project phases where systems will be replaced later on as part of this project.

Layer 2 is the service components. This is the implementation of the services layer: it may use
or encapsulate functionality from the operational systems layer, thus hiding the actual provider
from the consumer. Implementation hiding and enforcement of layer interfaces reduces solution
component coupling and complexity.

Layer 3 is the services. This layer forms the basis for decoupling business and IT. It is the layer
that captures the contract for each standalone business function. This layer contains all of the
exposed services that can be discovered, invoked and possibly choreographed into a

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 23
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

composition. Each service is a contract between service consumers and service providers. It
represents a governed business operation that is potentially consumed by multiple business
processes and/or consumers. Services may be “atomic” (self-contained) or “composite” (i.e.,
made up of other atomic and/or composite services).

Layer 4 is the business processes. This layer contains the operational artifacts that implement
business processes as a choreography of services. The set of services that are choreographed is
limited to services offered in Layer 3.

Layer 5 is the consumers (requestors). This layer exists to recognize that the technology chosen
to implement business processes in Layer 4 must permit access from a wide set of channels.

Layer 6 is the integration or Enterprise Service Bus (ESB) layer. This is a cross cutting layer,
meaning it is used across all of the first five layers. The ESB provides routing of services,
protocol translation, message transformation and mediation.

Layer 7 is the Quality of Service layer. This layer is again cross cutting, its focus is on quality
characteristics of a service invocation, securing services and providing management and
monitoring of the infrastructure upon which the service-oriented architecture is deployed. This
layer also provides logging and auditing functionalities.

Layer 8 is the Data and Business Intelligence layer. This layer is again cross cutting across the
first five layers. It provides data access components to enable services to get at and manipulate
business data.

3.3.3 UCMS SOA lllustration

To further illustrate the layers of service-oriented architecture and the implementation of services,
it is appropriate to provide a UCMS example.

JService Portlet WSRP B2B Other ST

] |1
g K § ol Z
H (59| 2
‘ S | 5 g E
i T |SE| 5
- e
Services g 5‘3 -

atomic and composite = 'E‘ :

Ts"v T

L interested Party
i” Management

Figure 3.3-3: UCMS lllustration of SOA Layers

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 24
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

3.3.4 UCMS Common Modules

UCMS provides foundational business services that are reused and are often referred to as the
Common Modules. They include: Case Management, Interested Party Management, Financial
Management, and Appeals Management.

Each of these modules is defined using a Service Model. The service model lists the services
needed to satisfy the functionality required for each module in a service portfolio. Each service in
the portfolio is evaluated based on business needs to determine if the service is to be
implemented. The service interface is then fully specified using WSDL — these are the services
made available at Layer 3 of the SOA Layers.

Components provide the implementation(s) for the service specifications. The implementation of
the components may be provided by the Application Services UCMS-Framework and are
deployed at Layer 2 of the SOA Layers. Other components with functionality that is provided by
another application or by a specific product are deployed at SOA Layer 1.

In the example above, the Interested Party Management module provides a collection of services
that enable an application to interact with Interested Parties. Interested Parties may be workers,
employers, owner-officers, third party administrators, or others. This module provides a service
to manage the creation of these “Interested Parties”, it maintains the relationships between
parties, associates documents and notes to parties, provides the searching functionality, and has
the ability to update or modify the party. As usual, the available services are all specified using
WSDL. The components that implement the services are created primarily with the Application
Services UCMS-Framework with some functionality provided by specific products.

The Case Management module provides a collection of services that enable an application to
interact with a Case. Cases are created for employers, and employer audits. An employer case
manages information for liable employers. An employer audit case manages tax audit
information for employer audits. The services provided enable applications to create, combine &
uncombined cases, to associate documents and notes to cases, to create and update tasks, and
to schedule and reschedule appointments. The services are all specified using WSDL. The
components that implement the services are created primarily with the Application Services
UCMS-Framework with some functionality provided by specific products.

The Financial Management module provides a collection of services to create or utilize financial
transactions. Anywhere in a UC application where financial transactions are needed, this module
provides the basic functionality to create the transaction in a uniform and standard way. The
services provided enable applications to create financial transactions for receivables, write-offs,
remittances, deductions, disbursements, and others. The services are all specified using WSDL.
The components that implement the services are created primarily with the Application Services
UCMS-Framework, with some functionality provided by specific products.

The Appeals Management module provides a collection of services that enable an application to
manage appeals. Services are provided to enable applications to track appeals, accept different
levels of appeals, generate subpoenas, assign referees to appeals, schedule hearings, remand
cases, record appeal decisions and associate documents with the appeals. The services are all
specified using WSDL. The components that implement the services are created primarily with
the Application Services UCMS-Framework with some functionality provided by specific products.

3.3.5 Servicesin SOA

One of the most common debates in the discussion of SOA is over the question of “what is a
service?” lIs it a function within my application? Are all application functions services? Does
SOA include system services? These are all relevant and important questions. Coming up with a

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 25
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

single, mathematically precise definition that applies universally to all situations is difficult. In
practice, however, such precision is not necessary to achieve value and success from SOA.

As a gross generalization, a service is a repeatable task within a business process. If the
business processes can be identified, and within them the set of tasks that are performed, then it
can be claimed that the tasks are services and the business process is a composition of services.

Certain tasks can be decomposed into business processes in their own right. An order-entry
process includes, among other things, a task to confirm availability of the items being ordered.
The confirm availability task is itself a business process that includes, for example, the tasks of
checking the on-hand inventory, verifying the supply pipeline, and possibly creating a backorder
request and determining its availability. Thus, business processes are themselves services; there
is a principle of recursive decomposition implied in the term service. If taken far enough it can be
claimed that everything is a service. This, obviously, is not useful — at some point treating
everything as a service would yield an incredibly inefficient over-generalization of the problem
space, not to mention significant performance issues in operation.

In practice, this principle of recursive decomposition should be exercised only to the extent that
flexibility is legitimately needed within the business design. In doing so, one can then ensure that
the information system manages services to enable flexibility — but only to the degree that it is
required, knowing that flexibility usually comes with a certain overhead that can be avoided where
flexibility is not required. IBM’s Service Oriented Modeling and Architecture (SOMA)
methodology, as employed on UCMS, was devised as a prescriptive approach to identifying the
appropriate granularity and construction of services derived from a business design.

Characteristics of Services

In practice, SOA maintains that services be invokable through common communication protocols
that provide interoperability and location transparency. The interface-based service descriptions
decouple the provider and consumer through open standards and protocols.

Based on this description of a SOA, the distinguishing features of services include being well-
defined, discoverable, invokable, units of business function, with explicitly defined interfaces, a
“contract” provided between consumer and provider, invokable through common communication
protocols, and interoperable. These characteristics can be expanded on as follows:

e Services are well-defined; and the interfaces used to interact with the service are specifically,
accurately and unambiguously defined.

e Services are discoverable; the description of the service is searchable and available for
binding to and invoking by a service consumer.

e Services are units of business functionality, units of work that provide specific application
functions. They are runtime agents that expose application capability designed to deliver
business services on behalf of a service provider.

e Services are invokable, that is, they are available for consumption enabling the unit of work
they perform to be utilized.

e Services have externally defined interfaces, i.e., the description and definition of the service
is defined external to the service itself. WSDL is used to define and describe services in this
services architecture.

e Services provide a contract between the consumer and provider. The external definition
(WSDL) serves as that contract.

e Services are invokable through common communication protocols. A set of protocols based
on the eXtensible Markup Language (XML) enable the deployment of run-time services.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 26
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Services are interoperable across platforms and product vendors. They enable interaction
between applications on any platform, written in any language. This is achieved by adhering
to open standards.

e Services are building blocks of business integration. Services are the low level components
used within business processes to actually perform the work.

e Services address the issues of data and application integration, and provide a mechanism for
translating technical functions into business-oriented services.

e Services provide a standard-based means of integrating different software applications,
running on a variety of platforms and/or frameworks.

e Services provide a systematic and extensible framework for application-to-application
interaction built on top of existing Web protocols and based on open XML standards.

e Services provide a programming language-neutral, and runtime environment-neutral
programming model to accelerate application integration.

e Services offer a simple, standardized mechanism to describe, locate, and establish
communication between online applications. Services enable organizations to communicate
on a process or application level with their partners, evolving to an on demand model.

3.3.6 SOA Infrastructure

IBM’s SOA Reference Architecture, which was used as the pattern for the UCMS SOA
infrastructure, explains the key infrastructure capabilities required to implement comprehensive,
enterprise-wide SOA solutions. The SOA Reference Architecture is depicted in the following
diagram.

Model ' M
anage
Assemble ’ eeloy

Business Innovation & Optimization Services

Facilitates better decision-making
with real-time business information

Interaction Services Process Services Information Services

- -
5 0 . . & 5]
g_ D Enables collaboration Orchestrate and Manages diverse S g
o3 between people, automate business data and content in a ol
2 % processes & information processes unified manner 2 g
2 =

I | |
Manage

Integrated Facilitates communication ESB between services
environment and secure
for design services,

and creation 5 . .) applications
of solution Partner Services Business App Services Access Services 2 &
) - .) 3
assets . . Build on a robust, Facilitates interactions , (| resources

Connect with trading . s . <

scaleable, and secure with existing information & 5

partners - ; L <8

services environment and application assets 1S

Infrastructure Services

Optimizes throughput,
availability and performance

Figure 3.3-4: SOA Reference Architecture

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 27
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The SOA Reference Architecture includes Development Services for use in designing and
creating the workflows, services and components in the SOA. It includes Business Innovation &
Optimization Services (alternately referred to as Business Process Management) for use in
monitoring and managing the runtime implementations at both the IT and business process
levels. A key feature of the Architecture is a linkage between the Development and Business
Innovation and Optimization Services (BIOS). The ability to deliver runtime data and statistics into
the development environment allows analyses to be completed that drive iterative process re-
engineering through a continuous business process improvement cycle.

The SOA Reference Architecture contains a set of services that are oriented toward the
integration of people, processes, and information. These services include:

¢ Interaction Services —capabilities required to deliver IT functions and data to end users.

e Process Services — implement workflows and manage the interactions of multiple services in
ways that implement business processes, i.e., “business choreography”.

¢ Information Services — provide the capabilities required to federate, replicate, and transform
data sources.

At the core of the SOA Reference Architecture is the Enterprise Service Bus. This architectural
construct provides inter-connectivity to leverage and use services across the entire architecture.
The ESB is a key factor in enabling the service-orientation of the architecture.

The Business Application Services provide runtime services required for new application
components to be included in the integrated system. Design and implementation of new business
logic components for integration enables them to be fully re-useable, allowing them to participate
in new and updated business processes over time.

Existing enterprise applications and enterprise data are accessible through a set of Access
Services. These provide the bridging capabilities between legacy applications, pre-packaged
applications, enterprise data stores (including relational, hierarchical and nontraditional,
unstructured sources such as XML and Text), etc. and the ESB. Using a consistent approach,
these access services expose the data and functions of the existing enterprise applications,
allowing them to be incorporated into functional flows that represent business processes.

Integrating the systems of external partners with those of the enterprise improves efficiency of the
overall value chain. Partner Services provide the connectivity and integration services required for
efficient implementation of business-to-business processes and interactions.

Underlying all these capabilities of the SOA Reference Architecture is a set of Infrastructure
Services which provide security, directory, IT system management, and related functions.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 28
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Figure 3.3-5: UCMS Capabilities and Technologies Rendered in a SOA

The SOA Reference Architecture was the starting point for the UCMS technical architecture. As
seen in Figure 3.3-5, the first step was to map required capabilities and technologies to a service-
oriented infrastructure, using the SOA Reference Architecture. Included in these are:

support for multiple channels including web, voice, document scan/OCR, email, and fax;
workflow (process choreography);

integration with business partners;

messaging/data exchange;

document management

correspondance management;

reporting, ad hoc query, and statistical analysis;

J2EE applications, for Accounting, Appeals, CWIA, Tax Services, Wage Records, etc.;
a J2EE framework, called the UCMS Framework;

data management;

security management;

business process management of the SOA; and

requirements management, modeling, development, testing, and development management
tools.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 29
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.0

Once the UCMS capabilities and technologies were placed in a service-oriented context, the next
phase, which resulted in the UCMS technical architecture, was to map software products to the
required capabilities and technologies. This is depicted in the following diagram.

WebSphere Bl Modeler Rational Software Architect Rational Testing Tools Raticaal A_II_DO(I;/::nagernent
WebSphere Bl Monitor Business Tivoli System Management Tools
Multiple channels, Process
including web, Management
voice, scanned/
OCRd paper,
email, and fax
= Workflow E
&E R o ¢ 2o 9
Q—FES = S5 525
& 2 > Soc < 5L o E
= o 3 ol © £
o S5 = N EGo
Mi% 8> 8 Qn s e % G Service-oriented
£ & o =Q § architecture
@ = = encompassing
l r | I Middleware J2EE applications,
for messagin | I middleware, and
| I and dal% 9 COTS products
Enterprise Service Bus EXChandg)
l I | I | I | l | l o Business | l
va g J2EE Applications Rules Application and Data
@ E < S 5 -9 0 Engine Access Services
oo |29 [S0 5 2)
ﬁ c O % = P wo cg S] 2
s> 20 2o >a = .= 0T £ o = i
So Tuw S0 S o 2a o206 o 2 & <
@ Qg w = O n::’ (] g 2 & < = = Business Application and
& = < @ % % g (&) Data Services.
Reporting, I =< F_ |-_|'| ﬂ Oracle
FileNet F::gs aq‘i:r‘;f =
f = Text Oracle Legac
ERRS Letters and BSCoE4) JA33 Dgatay
statistical (Pt
analysis i
Y Infrastructure Services Tivoli,
network,
DB tools

Figure 3.3-6: UCMS SOA Solution Overview
Component Architecture

4.1 Introduction

Components are the primary concept used for modular design. Within the software domain, a
component can be defined as an encapsulated part of a software system that has a well-defined
interface through which its services are accessed. Components are not limited to application
components, they can also be:

e Technical Components
e System Software Components

e Hardware Components

A component is a relatively independent part of an Information Technology (IT) System which is
characterized by its responsibilities and eventually by the interface(s) it offers. Components can
be decomposed into smaller components or composed into larger components. Most components
are software, though some may be hardware. Some components already exist, but it was also
necessary to build or buy others. A component can be a collection of classes, a program (e.g.,
one that performs event notification), a part of a product (e.g., Oracle database), or a hardware

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 30
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

device (e.g., a scanner or laptop). Some are primarily concerned with data storage. They can be
very large or quite small.

The component model describes the structure of an IT System in terms of its components with
their responsibilities, interfaces, (static) relationships, and the way they collaborate to deliver the
required functionality. The component model work product is the main work product documenting
the functional aspect of the architecture of an IT System.

Component models can be defined and documented at three levels:

e Atthe conceptual level, the macro level components and a layered architecture that is built
on solid architectural principles such as separation of layers with an emphasis on increasing
the cohesion between the layers and reducing the coupling that exists between them. This
level of elaboration is generally technology agnostic.

e At the specification level, focusing on specifying the components’ responsibilities and
characteristics required to deliver the IT System’s requirements (both functional and non-
functional). These specifications are typically technology and product neutral.

¢ At the physical level, focusing on how the components will be realized to meet the previously
established specifications. Specified components can be transformed into physical
components via custom development, the purchase of products or the reuse of assets.

Overall, one (or more) component model(s) documents the specifications and corresponding
realizations of all components (either application and/or technical), which are ultimately placed on
the operational model, together with a description of their interfaces, dependencies and
collaborations.

Component models are useful in many contexts, helping to define and document:
e The structure of a particular IT System
e The recurring interactions and dependencies between particular sets of components

e The components present within an enterprise, each typically corresponding either to the
scope of a single solution project for application level components, or to the technical
components also present in these solution projects

This section presents a conceptual-level component model for UCMS and an overview of the
physical-level model. (A specification-level model is not presented as it was evolved into the
more detailed work product. Decisions on physical implementations, such as FileNet for
document management, had already been made as this work was beginning.)

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 31
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.1.1 UCMS Conceptual Component Model

‘
Systems Management Reporting
Portal Services Services
|
— —T|
”@% Web Local Data
iirane Server N . | i
e Application Services Services
Security Services
Mobile
Users
Scan
Stations
Form Services
Enterprise Service Bus —1 Workflow Services
Document Services
Business
Partners

Figure 4.1-1: UCMS Conceptual Level Component Model

Above is a conceptual-level view of the architectural components required to implement UCMS.
Each “box” is a system component package. Descriptions of the functionality provided by each
package are as follows.

Web Server

The Web Server package is responsible for receiving HTTP(S) requests and producing HTTP(S)
responses containing HTML and/or Extensible Markup Language (XML) messages for delivery to
the Web Client. If a request is for a static HTML page then the HTTP Server directly handles the
request. If a request requires a dynamic generation of HTML pages, then the HTTP server
forwards the request to Application Services through Portal Services.

Security Services

This package is concerned with Application Security. It provides security management and
administration, and ties into the infrastructure level security services (e.g., firewall port filters,
intrusion detection, virus protection). This package is considered to contain a Security
Administrator component, which provides for the management and administration of security
policies regarding user ids, passwords and access control lists. A Security Manager component
manages all application security requests made by the Application Services Package
components and hides the details of accessing security policy information from LDAP-based
directories.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 32
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Portal Services

The Portal Services package provides the underlying mechanism for creating highly customizable
portals for individual users. Simply stated, a portal is a single interface that provides convenient
access to everything a user needs to get the task done, regardless of where it exists. The
fundamental characteristics of a portal include: 1) information aggregation, 2) targeted and
personalized information, 3) accessibility, and 4) single sign-on.

Application Services

The Application Services package primarily encapsulates the business process and business
data into business services that can be reused across multiple applications. It codifies business
processes and business rules such as “Obtain Accounts Balance” and “Transfer Funds”. It
represents the business data or domain such as Account and Customer, as well as, the
associated ability to manipulate the business data to derive additional information.

The Application Services package also contains the application framework components used to
implement and extend a model-view-controller architecture (really the model and controller) as
explained in a later section.

Workflow Services

The Workflow Services component is responsible for choreographing complex long running
business processes that may include integration between multiple systems and involvement from
multiple users in completing an end-to-end workflow. It leverages scheduling and flow definition
components. The combination of these three components represents a complete workflow
solution.

Enterprise Service Bus

This package is a framework to provide flexible connectivity infrastructure for integrating and
reusing applications and services throughout the organization. An ESB manages connectivity
needs by providing standards based application integration. It routes service request(s) to
service provider(s) based on protocol and content. It enables mediation of messages whereby
the message can be augmented from data stores and logged before reaching the service
provider. It supports multiple protocols, such as HTTP, JMS, MQ, etc.

This package is also considered to contain connector and adapter components, responsible for
performing necessary protocol and/or application-specific conversions, delivering the message to
the target system and, in some cases, for invoking the target applications.

Form Services

The Form Services package automates the creation and delivery of documents in concert with
business processes. It provides the ability to deploy electronic forms securely to extend data
capture of custom applications where appropriate. It implements personalized document
generation by combining templates and enterprise data on customers. It provides flexibility in
document delivery, via output channels such as print, email, or fax. It supplies document
template design tools to flexibly create sophisticated, professional-looking documents.

Document Services

The Document Services package implements the ability to track and store electronic documents
and/or images of paper documents. This package provides storage, versioning, metadata,
security, as well as indexing and retrieval capabilities.

Document Services should not be confused with content management, which has to do with
content authoring, review, approval, and publishing processes. These capabilities, not germane
to UCMS solution development, can otherwise be associated with a Content Management
package. It should also not be confused with records management, which has to do with
identifying, classifying, archiving, preserving, and destroying records.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 33
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Local Data Services

The Local Data Services package component provides operational and management functions to
the local data store elements. It provides data storage for custom and COTS applications. It
provides for storage of infrastructure administrative databases. It also provides for front-end
needs such as storing session information, user profile information, etc. Functionality includes
transaction execution, monitoring agents and stored procedure execution.

The Local Data Services component is differentiated from an “Enterprise” Data Services package,
which has to do with back-end legacy systems and packaged applications, such as SAP
Financials, PeopleSoft Human Resources, etc.

Reporting Services

The Reporting Services package provides for definition and execution of predefined and ad hoc
reports. It provides for data access, report design, delivery, and report integration with portals
and applications. Reporting Services implement the scheduling of report production. It provides
for storing, managing and providing secure access to generated reports.

Reporting Services may supply statistical analysis capabilities, but it does not imply sophisticated
business intelligence (BI) capabilities, such as OLAP (On Line Analytical Processing).

Systems Management

The Systems Management Package provides a range of services to manage system hardware
and software. While always important, these services increase in importance as the distributed
nature of a system increases. These services address areas such as software deployment and
configuration, the use of various instrumentation techniques to monitor, log, and control system
components, and backup and recovery. Many commercial off the shelf software products
implement instrumentation features to enhance their manageability. Custom application software
can use several approaches to accomplish the same result, ranging from logging significant
events, to the use of systems management APIs and services including SNMP (simple network
management protocol) and ARM4 (Application Response Measurement).

4.1.2 UCMS Specification Component Model

Figure 4.1-2 (below) is a specification-level view of the architectural components implemented in
UCMS.

At this level, each package is opened up to expose specific functionalities assigned to relatively
atomic (single purpose) components. Implementation decisions have been made (i.e., custom,
COTS products). Connections and collaborations are depicted.

In the sections that follow, detailed descriptions are provided for the components in each
package, beginning with the Application Services Components.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 34
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Systoms Management Roporing Services
[Forarsenices | aonen_] s \

Tivoli
Omnibus
Portal
Repo
Portal
Search

ITCAM for AD

Tivoli Data
Warehouse
Objects

Application Services Enterprise

WebsSphere | 5
Anpicaton |z oa

Server

Config aching ceptiof
Fmwk Fmwk andling
BO
Portlet

o (e
— Portlet
Acive dentity
Directory Service m

Reports

Tivoli Enterprise
Monitoring
(TEMS)

Tivon
Netview
Console

Business-

Tivoli Ent
Portal (TEP)
Group Sync

Local Data Services

oLTP

Database

Security Services

Browser
Client N s web
Server

SiteMinder
Policy

Server

o Mobile
Server
Tdentity
sadg Client Minder
Mobile Server, SiteMinder Security
Sync Workflow API Fmwk
udit Db Server
Form Services
LiveCycle
Designer. LiveCycle ETTETETT
nierprise Service Bus
Templates Forms WAS
Rule Set [Human
Integration _ Task
Server [L Websphere [BUSiness
BPM Flow
State
Service Brokeg Machine| Service
Document Services Registry Component
Content Web Service
Py Application Descriptions
Collector Engine

'[i\ Capture
Desklop

Low-Volume
Scan Station

Figure 4.1-2: UCMS Specification Level Component Model

4.2 Application Services

4.2.1 Introduction

In simplest terms, the Application Services package is where the UCMS business applications,
such as Wage Record and Tax Services is implemented. As indicated in the light gray
components in Figure 4.2-1 (below), these applications are implemented in the form of
components representing business processes, actions, services, domain (data) objects, and
business rules.

However, as indicated by the dark blue objects surrounding them, these business components
require the support of other components in order to interact with the portal, the database, the
enterprise service bus, etc. These supporting components are implemented in the UCMS
Framework. The UCMS Framework is the focus of this document section. The UCMS
Framework is what structures the application components, since they provide the interfaces to
which the application components are coded. The UCMS Framework components represent the
architectural choices that have gone into this area of the overall component model.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 35
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Viobile |
ssagi

- @
- Application
Rational Developer

RSA/

RAD

0

C:
D

valme ¥
Scan Statior pe]

Figure 4.2-1: Application Services Context

The UCMS Framework is built-up from three categories of components: 1) those from IBM’s
Java/J2EE Framework (licensed from IBM), 2) open source components that have achieved wide
industry acceptance including the Spring Framework and Struts Framework, and 3) extensions
created specifically for the UCMS Program itself.

UCMS Java Framework

It is common for applications to require multiple types of functional support. Recognizing this,
IBM created an enterprise application J2EE/Java framework that represents IBM Global Services
best practices for custom enterprise application development in the Java space. Harvested and
hardened from hundreds of engagements, this framework is a full-featured, end-to-end J2EE
framework aimed at the enterprise customer. This includes a set of components, each
responsible for a different portion of the J2EE space, such as persistence, logging, and
messaging. It also includes what is known as the Spring Framework, which is described later. In
places, where the emphasis is on the Java enterprise aspects of the framework, it is called simply
the “J2EE framework”.

In creating support for each area of the J2EE space, the UCMS Framework utilizes industry
specifications, like JIMS 1.1 and JSR-168, and leverages best-of-breed open source frameworks
like Spring. It is important to note that, in addition to improving integration, the UCMS Framework
interfaces shield the application from Application Program Interface (API) changes, provide
multiple implementation options, and provide some level of service currently not addressed.

UCMS utilizes a Java framework built by IBM called the Common Technology Enablers (CTE).
CTE is a derivative of the formerly known Enterprise Application Development for Java (EAD4J)
framework originally adopted in the UCMS application, and later upgraded to CTE 3.5.1. IBM no
longer formally licenses or supports CTE as a product, and has provided the Java source code to
those projects licensed to use the framework. UCMS is retrofitted to compile the source for the

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 36
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

framework along with the rest of the UCMS code as a set of utility libraries in the configuration
project. Additionally, CTE has undergone revisions since the 3.5.1 version adopted by UCMS.
CTE terminal version is 4.6. The UCMS utility libraries mentioned above are based on the 4.6
version of CTE and are compiled under Java 1.7.

The table below depicts the packages that are part of CTE (a combination of 3.5.1 and 4.6).

Package ‘ Usage ‘

Configuration Component Configuration provides instantiation and configuration
of components and resolves inter-component dependencies

Caching Provides a common caching API that can be used across
business services

Logging Provides logging features such as application tracing and
debugging. Native and 3™ party loggers are supported (e.g. log4j)

Exception Handling | Exception handling service provides a policy based approach to
handle exceptions. A policy defines how the exception needs to

be handled.
Messaging Implements common messaging patterns (e.g. JMS)
Data Access Implements common data access patterns (e.g. JPA, JDBC)
MVC-Base Support for Basic MVC pattern (Model, View, Controller)
MVC-Portal Support for JSR-168 Portlets

Framework Configuration

The UCMS Framework is based on a configuration management approach known as
dependency injection (DI), that allows the UCMS Framework to more easily adapt to future
changes in technology or available components. The Dependency Injection mechanisms are
derived from the embedded Spring Framework.

With this approach, components simply declare their dependency on certain services, and an
"external" piece of code assumes the responsibility of locating and/or instantiating the services.
This means that the component does not have to be changed when an external dependency
changes. The “external” code in this case is the dependency injection fulfilment capabilities
provided by the Spring Framework. Dependencies can be specified by name, type, and other
attributes. By separating dependency management from the low-level code, system development
is easier and less sensitive to changes in implementation of the functionality.

Open Source Components

Open source in the UCMS Framework includes components that are either de facto standards or
have achieved wide support in the IT industry. These include the log4J logger and the Struts
Model-View-Controller (MVC) Framework for Web applications. (Note that UCMS does not make
use of the Struts component.) In addition, the Spring Framework is used as a DI configurator. An
open source persistence framework called Hibernate is also used.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 37
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

It is worth noting that the configuration management and architectural approaches employed by
the UCMS Framework permit/facilitate different choices on other projects should the Department
wish or allow for future migration to different open source components on UCMS.

Extensions

This category of UCMS Framework component includes anything added to adapt to the specific
technical environment of UCMS or to provide some specific capability that is not provided in a
general-purpose framework. Two such components are an adapter from the security framework
component to the SiteMinder security application API, and a data access service that provides a
front end to an open source persistence framework (in this case Hibernate).

The following diagram depicts the UCMS Framework components that implement the high-level
functions in the preceding Application Services Context diagram.

Application Services [

WebSphere
Application
Server

Portlet
UCMS
Portlet

Domain
Object

™My ; Busmws
m Actions
E mwc Proc&ss

" Corticon
_ Serve
Rule Set

Service

Figure 4.2-2: Application Services Components
The sections that follow will describe each component of the UCMS Framework.

4.2.2 Configuration Management

4.2.2.1 Introduction

In determining the best practice approach to configuring UCMS Framework components, the goal
was to provide isolation among the layers of an application such that DLI could freely use
alternate technical implementations of components, such as the presentation and persistence
layers, without reworking the applications. In other words, the goal was to be able to “wire” these
different solutions together when required but to keep the business logic independent of them.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 38
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The solution was to employ the principle of dependency injection by using Spring, a very popular
J2EE open source framework. In fact, even the applications are isolated from that framework, via
a Component Configuration Service.

This section first explains the principle of Dependency Injection. It then describes the Component
Configuration Service and Spring usage.

4.2.2.2 Dependency Injection

Software components are a subset of collaborating components which depend upon other
components (constructed as Services) to successfully complete their intended purpose. In many
scenarios, the components need to know “which” components to communicate with, “where” to
locate them, and “how” to communicate with them.

One way of structuring the code is to let the clients embed the logic of locating and/or
instantiating the services as a part of their operational logic, but if the access mechanism or
interface for a service is changed, this can potentially require modifications to the source code for
many other components or services. In addition, embedding the location/instantiation logic results
in more complex code. Another way to structure the code is to have the clients declare their
dependency on services, and have an "external" piece of code assume the responsibility of
locating and/or instantiating the services and supplying the relevant service references to the
clients when needed. In the latter method, client code typically does not have to be changed
when the way to locate an external dependency changes. This approach is described as
Dependency Injection (DI), and the "external” piece of code referred to earlier is either a
somewhat more manageable hand coded connection mechanism, or an automated system
implemented using one of a variety of DI frameworks. Due to the size of the UCMS application, a
DI framework is used, which includes “auto-wiring” capability based on a number of criteria.
However, the framework (Spring Framework) also allows hard-coded wiring which has
advantages in some situations (such as better control over instantiation time, and over how
objects are constructed).

Until the early 2000’s, it was common to separate an interface from the implementation. The
“Factory” design pattern even allowed for hiding the complexity of instantiation (in other words,
preparing an object for use). (A “design pattern” is a reusable solution to a commonly occurring
software design problem.) However the mechanism to “locate” the services was often left to the
clients. Moreover some parts of a solution also needed to be aware of the dependencies between
the various services themselves, and thus implicitly had to work out the appropriate sequencing
of such component initialization, and track and manage their life cycles. The IBM framework that
was selected for use in UCMS reduces build effort and simplifies maintenance compared to the
earlier techniques of ad-hoc adoption without thorough integration.

Using Dependency Injection requires that the software developer simply declares the
dependencies, while the framework or the container works out the complexities of service
instantiation, initialization, sequencing and supplying the service references to the software
clients as required.

4.2.2.3 Component Configuration Service

The Component Configuration Service exposes the ability to request a component. It
encapsulates the details of accessing the configurator. This isolates the application from the
specific DI technology employed. It also allows that more than one DI framework (and therefore
more than one instantiated configurator) may be present within the application space.

The primary API for Component Configuration Service is the getObject operation on the
ComponentConfigurationContext interface. The following sequence diagram shows how to
obtain configured objects from the Component Configuration Service.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 39
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

| daider G Sy tampomerttovipiatonraty O et fguarostomes 0 Corfgiredditect Ot

1; gutisstance |) ; CompanantCasigeatonfacty

»

- getConfgurnoeContass () < ComponastConigustonCantat

3: getGbsect { opectfiarakiey © Streg) : Oiect

[CarpomprtConigentonfstenton ocoued]

clest mutt paske the exreston hendng serace

opropate
Vet

f.ae()

Figure 4.2-3: Configuration Service Sequence Diagram

The following describes each step a client must follow to obtain a configured object:
1. Get an instance of the Component ConfigurationFactory.

2. Get an instance of the Component Configuration Context which provides access to
configured objects.

3. Invoke the getObject operation on the ComponentConfigurationContext passing the
objectNameKey to indicate the object being requested.

4. If the configured object is retrieved successfully, it must be “casted” to the appropriate type
that is needed by the client.

A more detailed look at the implementation, utilizing Spring, is shown in the following diagram.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 40
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

S) - A o T v Grewnn | [(Seeones O T G A & T [T
L e e]
" |
PN | | ottt 432y
PG KNG | (OTST Tl CrERTAL
e
s Ut Dl e St o d]
e |t ey e
4 can
-
-
- e
PISI
samtmages | st [
Whtantons | wowtterwe g) | e
Taatzuth el)
it Bérpnatac v T3 | by
IR | Mot e S | T (H
$ g g«

g Y N e i 1T

ve
e Dot | st S - vz) | gt

el
ST | g oY | VY) Bt

,,,,,,

I { Ssctuamensy | 3N;) Imas

Figure 4.2-4: ComponentConfigurationContext.getObject

4.2.2.4 Spring DI*

There are several DI frameworks available today including Spring, PicoContainer, and HiveMind.
Spring was chosen for use on UCMS due to its maturity and wide acceptance.

Spring Framework is a layered Java/J2EE application framework, based on code published in
Expert One-on-One J2EE Design and Development by Rod Johnson (Wrox, 2002). It has since

become an Apache open source project, and is very widely accepted by developers and vendors
due to factors including:

o Ease-of-development and fostering of good programming practice by enabling a POJO-
based (Plain Old Java Object) programming model.

! Ref. “Introduction to the Spring Framework”, Rod Johnson, TheServerSide.com

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 41
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Spring does not compete with existing solutions (e.g., popular open source logging and
persistence frameworks), but instead makes existing technologies easier to use.

e Spring’s DI-based configuration management services can be used in any architectural layer,
in whatever runtime environment.

e Supports multiple container types (Bean Factory, and Application Contexts), and multiple
types of injection models (Constructor, or property-based)

e Eases test burdens by separating unit testing from application integration concerns

¢ Simplifies solution construction by placing responsibility for object life cycle issues
(instantiation, initialization, operation, and destruction) in the framework, instead of in all of
the code modules. This results in cleaner, more use-focused construction as well, by
separating business functions from routine implementation and management tasks.

Although the Spring Framework has many components, the UCMS Framework implements
configuration management via the Component Configuration Service. These and other Java
functions are based on the use of “JavaBeans” and/or “Enterprise JavaBeans”. JavaBeans are
reusable software components, constructed with Java. They typically encapsulate many functions
into a single object (the Bean). Of particular note, they provide access to properties using what
are known as “getter” (to get values) and “setter” (to change values) methods. These
mechanisms are standardized, well documented, and the actual implementation is exposed via a
standards-based eXtensible Markup Language (XML) declaration file.

The core of Spring is the “org.springframework.beans” package, designed for working with
JavaBeans. This package typically isn't used directly by users, but underpins much Spring
functionality by incorporating common extensions to utilize Beans via Spring.

The next higher layer of abstraction is the bean factory. A Spring bean factory is a generic factory
that enables objects to be retrieved by name, and which can manage relationships between
objects, such as parent/child relationships. In fact, all of Spring is based on bean concepts.

Through its bean factory concept, Spring is a DI container. However, it is not a container in the
sense of heavyweight containers such as, for example, EJB containers. A Spring BeanFactory is
a container that can be created in a single line of code, and requires no special deployment
steps. As aresult, they are very easy to develop, utilize, and maintain.

Because the Spring container manages relationships between objects, it can add value where
necessary through services such as transparent pooling for managed POJOs, and support for hot
swapping, where the container introduces a level of indirection that allows the target of a
reference to be swapped at runtime without affecting callers and without loss of thread safety.
One of the beauties of Dependency Injection is that all this is possible transparently, with no API
involved, and thus, with no coding changes required if the DI injector is changed.

Spring’s implementation approach is illustrated as follows.?
XML Declaration

The implementations that need to be instantiated are declared in the XML. Dependencies
between services are also declared as “property” elements. Spring Framework uses this
information to invoke the corresponding “setter” method to manipulate those properties when
necessary. The following code snippet shows how these mechanisms are described in the
hierarchical XML file:

2 Excerpted from “A Beginners Guide to Dependency Injection” by Dhananjay Nene, TheServerSide.com.

http://www.theserverside.com/news/1364152/A-beginners-quide-to-Dependency-Injection

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 42
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

http://www.theserverside.com/news/1364152/A-beginners-guide-to-Dependency-Injection

<beans>

<bean id="AirlineAgency"

class="com.dnene.ditutorial.common.impl.SimpleAirlineAgency"
singleton="true"/>

<bean id="CabAgency"

class="com.dnene.ditutorial.common.impl.SetterBasedCabAgency"
singleton="true">

<property name="airlineAgency">
<ref bean="AirlineAgency"/>
</property>
</bean>
<bean id="TripPlanner"

class="com.dnene.ditutorial.common.impl.SetterBasedTripPlanner"
singleton="true">

<property name="airlineAgency">
<ref bean="AirlineAgency"/>
</property>
<property name="cabAgency">
<ref bean="CabAgency"/>
</property>
</bean>

</beans>

Container Initialization

The container initialization typically requires a reference to the xml file and an instantiation of the
BeanFactory. This results in the creation of a “resource” and can be performed with a single line
of code; once created (the “new” method below), it can in turn be used to create a Factory:.

ClassPathResource res = new ClassPathResource ("spring-beans.xml");
BeanFactory factory = new XmlBeanFactory(res);

Dependency Resolution

References to the services are retrieved based on the 'id' specified in the xml (not the interface
class). Again all the services are implicitly instantiated in the appropriate order and the setters are
called to resolve their dependencies.

factory.getBean ("TripPlanner") ;

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 43
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.2.3 Model-View-Controller

4.2.3.1 Introduction

The UCMS Application Services area is, at its core, based on Model-View-Controller ("MVC"), a
universally recognized software architecture design pattern.

The MVC pattern provides a host of design benefits. It separates design concerns (data
persistence and behavior, presentation, and control), decreasing code duplication, centralizing
control, making the application more easily modifiable, and facilitating debugging. MVC also
helps developers with different skill sets to focus on their core skills and collaborate through
clearly defined interfaces. For example, a J2EE application project may include developers of
custom tags, views, application logic, database functionality, and networking.

Furthermore, MVC provides a conceptual design core that can be extended by a framework to
manage concerns such as:

e Centralized control of such application facilities as security, logging, and screen flow.

e Addition of new data sources by creating code that adapts the new data source to the view
API.

e Adaptation of new client type to operate as an MVC view.
In fact, these goals are realized in the UCMS Framework in the MVC and other areas.

The UCMS Framework provides an MVC implementation for a portal channel and MVC “Portal”
components. Similarly, and although there is no usage within the scope of UCMS, an MVC
implementation for Web applications is provided via Struts, demonstrating the flexibility of the
UCMS Framework approach. Recognizing that other client types, such as Java applications or
voice data, are or could be requirements in the future, the UCMS Framework adopts an
innovative Multi-Channel MVC component that provides a common representation of the Model
part of MVC. This preserves reusability of the business logic across a variety of delivery
channels, and since changes to business logic are a major cause of code modifications, the use
of an MVC Framework reduces code maintenance efforts and costs.

This section first provides a brief explanation of the MVC design pattern. It then describes the
Multi-Channel MVC, and MVC Portal components as used in UCMS.

4.2.3.2 MVC

MVC organizes an interactive application into three separate modules: one for the application
model with its data representation and business logic, the second for views that provide data
presentation and user input, and the third for a controller to dispatch requests and control flow.
Most Web-tier application frameworks use some variation of the MVC design pattern.

Dividing an application into three layers--model, view, and controller--decouples their respective
responsibilities. Each layer handles specific tasks and has specific responsibilities to the other
areas, as shown with the solid and dotted arrows in the diagram, and in the description within
each module.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 44
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

f Model

+ Encapsulates application state
{*Responds to state queries

» EXposes application
+ lunctionality

* Notifies views of changes

Pr——— L —
View View Selection Controller

« Renders the models » Defines application behavior
+ Requests updates from models * Maps user actions fo

» Sends user gesturesfocontroller 4§ 1 1 1 1 model updates

« Allows controller (o setect view User Gestures ESElECiSView fof re_sponse
»One for each functionality

Method Invocations
P02 Events

Figure 4.2-5: Model-View-Controller Architecture

In MVC, a Model represents business data and business logic or operations that govern access
and modification of this business data. Often the model serves as a software approximation to
real-world functionality. The model notifies views when it changes and provides the ability for the
view to query the model about its state. It also provides the ability for the controller to access
application functionality encapsulated by the model.

A View renders the contents of a model. It accesses data from the model and specifies how that
data should be presented. It updates data presentation when the model changes. A view also

forwards user input to a controller. A single model can have more than one view, boosting code
reuse, although it is also possible to have a separate controller for each client view type (below).

A controller defines application behavior. It dispatches user requests and selects views for
presentation. It interprets user inputs and maps them into actions to be performed by the model.
In a stand-alone GUI client, user inputs include button clicks and menu selections. In a Web
application, they are HTTP GET and POST requests to the Web tier. A controller selects the next
view to display based on the user interactions and the outcome of the model operations. An
application typically has one controller for each set of related functionality. Some applications use
a separate controller for each client type, because view interaction and selection often vary
between client types.

The literature on Web-tier technology in the J2EE platform frequently uses the terms "Model 1"
and "Model 2" without explanation. This terminology stems from early drafts of the JSP
specification, which described two basic usage patterns for JSP pages. While the terms have
disappeared from the specification document, they remain in common use. Model 1 and Model 2
simply refer to the absence or presence (respectively) of a controller servlet that dispatches
requests from the client tier and selects views.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 45
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

A Model 1 architecture consists of a Web browser directly accessing Web-tier JSP pages. The
JSP pages access Web-tier JavaBeans that represent the application model, and the next view to
display (JSP page, servlet, HTML page, and so on) is determined either by hyperlinks selected in
the source document or by request parameters. A Model 1 application control is decentralized,
because the current page being displayed determines the next page to display. In addition, each
JSP page or servlet processes its own inputs (parameters from GET or POST).

A Model 2 architecture introduces a controller servlet between the browser and the JSP pages or
servlet content being delivered. The controller centralizes the logic for dispatching requests to the
next view based on the request URL, input parameters, and application state. The controller also
handles view selection, which decouples JSP pages and servlets from one another. Model 2
applications are easier to maintain and extend, because views do not refer to each other directly
— those details are maintained by the controller. The Model 2 controller servlet provides a single
point of control for security and logging, and often encapsulates incoming data into a form usable
by the back-end MVC model. For these reasons, the Model 2 architecture is recommended for
most interactive applications.

An MVC application framework can greatly simplify implementing a Model 2 application. Such
frameworks include a configurable front controller servlet, and provide abstract classes that can
be extended to handle request dispatches.

4.2.3.3 Multi-Channel MVC

The Multi-Channel MVC component provides a unified, enterprise-level MVC development
approach that spans multiple applications and technologies. For example, it can be used in
conjunction with the Struts Framework to build interactive “web app” access to business services,
and it can simultaneously be used to help build web portal access, automated Web services,
message queuing, etc. This unified approach helps architects and developers to apply the MVC
pattern easily and consistently across multiple applications and interfacing technologies. It
streamlines application design, development, and testing efforts by providing proven design
patterns, framework components, documentation, and development tooling.

device g
|
Web » Serviet
Multi-channel

Portal » Portlet

)-> MVC
WS > W(_eb
Clients SCIVICES Server

Figure 4.2-6: Multi-channel MVC provides reusable, channel-independent solution

The Framework currently provides solutions for the following common channels and frameworks:
1. JSP (based on Struts),

2. JSP (non-Struts (JADE)), and

3. Portlet

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 46
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

For UCMS, the portlet support is used, as UCMS is a portal solution. (Note that UCMS does not
make use of the Struts or JADE components built into the IBM J2EE Framework from which the
UCMS Framework derives. However, aspects of these components exist in the UCMS
Framework. Struts is covered in this document for possible reference on other projects
implementing a Web application. JADE is an IBM alternative to Struts and is not covered in this
document.)

Inbound and Outbound Solutions

Inbound
ModelFacade:
xClient — xController] Command
Outbound {, Object(s)
Channel X ResultHandler Result
MBS / Chain
Server

Figure 4.2-7: Inbound and Outbound Solutions

Multi-channel MVC consists of two essentially independent sub-solutions: the inbound path
processes a client request to the Model, and the outbound path processes the Model results into
a response view. The inbound path uses commands to provide a standard, automated process
for translating client requests from their channel representations into the invocations of target
Model operations. This provides a standard client-Model protocol across all channels, and it
removes the need for any manual coding of Model access, which provides solution consistency
and reduces development and maintenance costs. The outbound path provides a flexible
framework for processing Model results and formulating views, based on an extensible collection
of various result handler components, which may include ones that are framework-provided,
customized for third-party frameworks, or completely new. The inbound and outbound solutions
can also be used independently from each other.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 47
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Inbound processing of requests

——+»| xController | ModelFacade — Model
object

1. 1 5. execute
XRequest

4, 6.
A marshall Command
Channel X _____-—>*
Mc-MVC .
N CmdRequest Object(s) Lresult Server

Figure 4.2-8: Inbound path from client request to Model result

For a given channel X (e.g., servlet, portlet, web service, etc.), server-side inbound processing
begins when a channel controller, “xController”, receives a request (or message) from a remote
client. Assuming the request is intended to invoke a Model operation, the xController has two
main responsibilities.

1. Create a CommandRequest object that is appropriate to the channel’s request type

2. Have the ModelFacade execute the CommandRequest, which will produce a “model result”
object.

The implementations of controllers and/or CommandRequests depend upon the technical details
of a given channel, such as servlet, or channel framework, such as Struts. The MVC Framework
provides these for common technologies. These implementations are provided as defaults or
custom ones can be selected through configuration. Other than such possible configuration, no
additional coding is required for inbound processing.

Outbound processing of Model results

1. formulateResponse

)y Heerelier " ResultHandlerChain
3 xRequest "
XResponse + formulateResponse..
BaseRequest [~>
1 < ResultHandler J

BaseResponse [~" o _d——-——"""">
result Server

Figure 4.2-9: Outbound Path ResultHandlers called

The outbound processing of Model results constitutes the view layer of MVC.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 48
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

For a given request-response pair, outbound processing uses the object(s) returned from
invoking the target Model operation, along with any additional view objects, to prepare a response
for the client. There are a multitude of possible scenarios for response processing depending on
such things as the nature of the client, the results from the Model, the state of the client’s view,
the view technologies or frameworks, etc. To accommodate such variations, the outbound path
uses the chain of responsibility design pattern. An ordered sequence of ResultHandlers is
obtained and processing control is passed to each in turn until one of them completes the
processing for the response. The composition of the Resul tHandlers used in the chain is
configurable. This approach permits a blending of framework-provided and custom handlers,
which can be composed to accommodate a wide variety of technical environments and design
approaches.

4.2.3.4 Framework Portal Support

IBM's working definition of portal technology is that “Portals provide a secure, single point of
interaction with diverse information, business processes, and people, personalized to a user's
needs and responsibilities.”

Stated another way, there are five capabilities of a portal that distinguish it from a web site. A
portal should provide:

1. A single point of access to all resources associated with the portal domain
2. Personalized interaction with the portal services

3. Federated access to hundreds of data types and repositories, aggregated and categorized
(federated access reduces or eliminates the need to copy data)

4. Collaboration technologies that bring people together
5. Integration with Applications and workflow systems

Java Specification Request (JSR) 168 is a portlet specification that standardizes the methodology
to develop components for portal servers. It enables interoperability among portlets and portals.
JSR-168, and the newer version called JSR-286, defines a set of APIs for portlets and addresses
standardization for preferences, user information, portlet requests and responses, deployment
packaging, and security. For instance, it codifies categories of portlet modes, including required
modes (Edit, Help, View, etc.), optional modes (such as About), and vendor-specific modes. It
defines window states (Normal, Minimized, and Maximized). It also defines mechanisms for the
portlet to access transient (Request, Session, Context) and persistent data. And it describes how
resources, portlets, and deployment descriptors are packaged together into one Web Application
aRchive (WAR) file.

UCMS leverages the many benefits of portal and adheres to JSR 168 to isolate UCMS assets
from changes in portal products.

The UCMS Framework provides a proper MVC implementation for UCMS applications and allows
the mapping between application state, view and action to be done in an XML configuration file.
The UCMS Framework also provides specific support for development using the JSR168
specification.

The most significant UCMS Framework JSR168 packages and classes are described on
following page. Within the original IBM J2EE Framework, these were named as part of the
“Amber” portal support functions, and the class names (below) reflect that.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 49
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

AmbertsriGiBasePorief
2 mberJsri 3BasePoriet])

oadabso ute PathFromWebContainer() -
Binit]) AmberdsriG8PortietAdapter

¥ o dit() B efautts ctionCode - String

(@¥cloHelp))

o iewn) » ®amberlsriGEPorletadapten)
FhandleDoEdit() ®performAclionFromReguest])
*randleDn_l—f;Ipn:) PoreateClisntinfoF romRequest])
FrandieDoView() ®performa cionByName()
®FrenderTa rgetFromState() PereateResult)

®etTarget]) _ BatoreUndoResult)

@etMarkup() E¥handieUndo)

‘renderTa_ rgetFromResult() ¥ handleUnda)
eiSession()) ‘B\'eﬁeuebndoResurt(}

(Bcreated cioninPorbetURY) BoetrvalidContractResult)

23 ctioninEventiatchi) ®BerformActionByMame()

EBzatatiributenSession) B sResutyalidy)

[PectttrioutenSession]) Binit())

[FoetatributeFromSession|) BoeiDefautictionCodel)

?‘gemtnbutemeSess oni} BsetDefauts ctionCode()

FastPorietMode]) BgetCurents cionCodeFromParameters()

EBsetPorletTo'iewMode() ®handieDoConfigure()

@:ctPorietToEdithods() ®handleDoEdit])

E¥zetPorietToHelpMode!) FhandieDoHelp()

BhandleDoViewl)
EdebugUndal)

Figure 4.2-10: Portlet Package

e The portlet package — The JSR168 portlet package is one of the most important packages in the
UCMS Framework. It has two classes:

- AmberJsrl68BasePortlet: it is the super class of all portlets in the UCMS Framework. It is
responsible for encapsulating the JSR 168 API (encapsulation “hides” the VIEW, EDIT and
HELP modes). It also provides convenience methods for handling exceptions, creating
parameters, logging information, dealing with the Session and setting the Portlet mode.

- AmberJsrl68PortletAdapter: it extends the base portlet package and has convenience
methods for executing an action by invoking an action handler. It also provides “undo”
capability, that is, if an action fails, it will return the last valid Result.

e The session package — The JSR 168 session package has the Session implementation which
uses the Session defined in the JSR168 API. It has two methods:

- public Object getAttribute(String name, int scope): this method returns the object bound with
the specified name in this session under the PORTLET_SCOPE, or null if no object is bound
under the name in that scope.

- public void setAttribute(String name, Object value, int scope): this method binds an object to
this session in the given scope, using the name specified. If an object of the same name in
this scope is already bound to the session, that object is replaced.

e The taglib package — The UCMS Framework JSR168 taglib package provides tags to deal with
the UCMS Framework COMMON Result. The Result is usually stored in Session so the target (in
the case of Portal a JSP) can retrieve it to display values.

e The util package — The UCMS Framework JSR168 util package is also very important because it
provides the UCMS Framework COMMON Parameters implementation to be used with the
JSR168 API.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 50
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.2.3.5 MVC Portal

In a typical portal scenario, a DLI customer logs in by providing a user name and password. Once
the user is authenticated, the login portlet retrieves the user’s security token using the Security
Services component and establishes a user session with the Session Management Service of the
JSR 168 portlet. The portlet then renders the desired page of the portal on the client browser.
Each of these pages consists of many portlets.

Subsequently, the user requests a particular action on a portlet to be performed. The request
comes to the portlet container as an HTTP post request. Based on this request, the portlet
container invokes the particular portlet. The portlet, in turn, invokes business logic, and the
response to the request is rendered to the user.

The MVC Portal component provides services, “MVCPortalServices”, for JSR 168-compliant
portlets. It also provides “MVCPortalAdminServices”, which are administrative services used by
the MVC Framework Configuration Component.

After the login operation, the login portlet uses the “setSecurityToken()” service of the
“MVCPortalServices” to set the security token. This token is required for all subsequent portlet
requests. Subsequently, application portlets use the “invokeModel()” service to execute business
operations on the backend model.

The “invokeModel()” invokes the “ModelFacade” interface of “MultiChannel MVC” component to
interact with the backend model. MVC Portal invokes “ModelFacade” services with session
(PortalSession), request parameters (PortalParameters), security token and action code of the
request.

The specific MVCPortalServices services offered to portlets include:

e setSecurityToken — This method stores the credential for the user. During the login operation,
the portlet stores the security credential for the session. Every user request is validated
against the credential of the user and only if the user is authorized will the business operation
be allowed.

e getSecurityToken — This method gets the credential for the user.

e getAction — This method is used to get an action. The action is one of the parameters in the
portlet request.

e getPortalSession — This method returns a channel-independent session from a portlet
session. This session holds attributes, other associated objects and credential of the
requester. This session is passed to the back-end engine (model). Before invoking a
business method, the model extracts all relevant information from the session.

¢ getRequestParameters — This method returns channel-independent request parameters from
a portlet request. The parameters contains all request parameters as well as the locale of the
requester. The parameters are passed to the backend engine (model). Before invoking a
business method, the model extracts all parameters which are required to make a business
request.

e invokeModel — This method is called by the portlet to execute a business operation.

e getNavigationOutcome — This method identifies the JSP page to render the response object.
The model of a business operation returns a response object. The portlet invokes this method
to translate the corresponding "outcome" for the response object. Based upon the "outcome”,
the portlet automatically invokes the JSP page to render the response object.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 51
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The following diagram illustrates usage of the central invokeModel() service.

18 {tontest) M Suw
ot FI ISPy VP L vealrd NV | eresnitd corhg e s Corpere 1T 8 esor o test Eorrmandd i Lot ug il tiey ol Mokt « ale
L: Quithaect o W Lt s * . WTT N
i v antan
ST MDA VO3 pled
O+ DOMAEREA0N
1 kiAo
COATRO0 DOTRNSREa0N § POOROCLEN
11 QOO TaECsEOn
ST - e CRO I
e
1.2 gutPors ey
33 ety Towen
Wty - eI [l iy
santu
34 QotSecurtyTohen
2% gethch e tPy sTeter
Lt 20N Nl
36 PROND T
T T T
2.7: pethcson
Ton
AN
ow wretw - W/
YUt
110 QetCect
130 creote
1 3 COMMANGRICITE Ty MW fon et
Qo 3 cox W00 Dy MW oS 330t sehury
L1 Cnele
13 mweot
Irwseation of MUC Sam Ivoves panerg secet skpbe b MAC e =
....... © aeen.t
. RN
= getSec sty Todown
DX AT - Ot Saeon Qo M SORTAL_BUTH' g Ao the
wadcn, This St wil ok Use sksaon
ety
£ GreSoanty Toker
7. utALtEn
QO M PORTAL LTI paranator hom
A VWG - Lo 21 ~ - -
PG folemequs i o, et THe ararmtin wil TN
& getactan U tzr

Figure 4.2-11: 5.3.1 invokeModel Service

1. Get “ComponentConfiguratorContext” object from the MVC Framework Configuration
Component

2. Invoke getObject() method of “ComponentConfiguratorContext” to get an instance of
“‘MVCPortalService”

Call “invokeModel()” method of “MVCPortalService”.

In “InvokeModel()”, extract the security token from the session (using method
getSecurityToken())

»

Get channel-independent session (using method getPortalSession())
Get channel-independent request parameters (using method getRequestParameters())
Extract the action of the request (using method getAction())

Get an instance of MVCBase service from “ComponentConfiguratorContext”.

© ©® N o O

Construct CommandFacade object of the MVCBase from the factory class provided.

10. Construct CommandElements object and invoke the execute method to perform the business
operation.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 52
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

11. The exact input objects that are required to perform a business operation will depend on the
operation. It is expected that the portal will ensure that all input objects that are required to
perform the business operation are available in the channel independent session.

12. Return the object returned by the Model.

4.2.3.6 Struts

Struts is recognized as the most popular web application framework for Java. Although Struts is
not used by UCMS, this description was kept in the Blueprint in case there are functions added in
the future that could be simplified by using this (already included) part of Spring.

Struts provides its own web Controller component and integrates with other technologies to
provide the Model and the View. For the Model, the Struts Framework can interact with standard
data access technologies, like Java DataBase Connectivity (JDBC) and Enterprise Jave Beans
(EJB), as well as almost any third-party package, like Hibernate, iBATIS, or Object Relational
Bridge. For the View, the Struts Framework works well with JavaServer Pages, including
JavaServer Pages Standard Tag Library (JSTL) and JavaServer Faces (JSF), as well as Velocity
Templates, XSLT, and other presentation systems.

Struts’ Controller acts as a bridge between the application's Model and the web View. When a
request is received, the Controller invokes an Action class. The Action class consults with the
Model (or, a Facade representing the Model) to examine or update the application's state. The
Struts Framework provides an ActionForm class to help transfer data between Model and View.

Most often, the Model is represented as a set of JavaBeans. Typically, developers use the
Commons BeanUltils to transfer data between ActionForms and the Model objects (or a Facade).
The Model does the "heavy lifting”, and the Action acts as a "traffic cop" or adapter.

Struts uses a configuration file (struts-config.xml) to initialize its own resources. These resources
include ActionForms to collect input from users, ActionMappings to direct input to server-side
Actions, and ActionForwards to select output pages. The configuration file can also be used to
specify validations for the ActionForms in an XML descriptor, using the Struts Validator.

Event Controller Dispatch Business Logic
HTTP Serviet Action
Reguest
Client]
€ Forward struts-config xmi
Browser
¥
Update View Get Model
HTTF JSP <Tag> Application State
Response
Figure 4.2-12: Struts Overview
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 53

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

At a high level, a Struts implementation looks like the above. The system components include:
e Client browser

An HTTP request from the client browser creates an event. The Web container will
respond with an HTTP response.

e Controller

The Controller receives the request from the browser, and makes the decision where to
send the request. With Struts, the Controller is a command design pattern implemented
as a servlet. The struts-config.xml file configures the Controller.

e Business logic

The business logic updates the state of the model and helps control the flow of the
application. With Struts this is done with an Action class as a thin wrapper to the actual
business logic.

e Model state

The model represents the state of the application. The business objects update the
application state. ActionForm bean represents the Model state at a session or request
level, and not at a persistent level. The JSP file reads information from the ActionForm
bean using JSP tags.

e View

The view is simply a JSP file. There is no flow logic, no business logic, and no model
information -- just tags.

Struts Detail

The following diagram shows the interrelationship of the main Struts components:

ActionForward Action ActionErrors
struts. action) <- - - - (from oryg apache. struts. action -
(from org apache.struts, action) realosy (fram org.apa) RUSeSs (from org apache struts. action)
% & A 7 F X
«uses, createsy wuses, createsy’ i | wcreatesy.
wuses, createsn|
L wusesy
i X i ActionError
ActionForwards t] (from crg apache. struts.action)
(from org.apache. struts. action) i !
#orwards 0.1

juuses, createsn 1
0..1{#serviet (usesy
ActionServiet e ActionForm
{Trom org.apache. struts. action) Huses, Clealesy (tram oy apache. struts.action)
“suses, creates»
#serviet G 1

Figure 4.2-13: Relationship of Command (ActionServlet) to Model (Action & ActionForm)

ActionServlet class

ActionServlet is the Command part of the MVC implementation and is the core of the MVC
Framework. ActionServlet (Command) creates and uses Action, an ActionForm, and
ActionForward. The struts-config.xml file configures the Command. During the creation of the
Web project, Action and ActionForm are extended to solve the specific problem space. The file
struts-config.xml instructs ActionServlet on how to use the extended classes. There are several
advantages to this approach:

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 54
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e The entire logical flow of the application is in a hierarchical text file. This makes it easier to
view and understand, especially with large applications.

e The page designer does not have to wade through Java code to understand the flow of the
application.

e The Java developer does not need to recompile code when making flow changes.
ActionForm class

ActionForm maintains the session state for the Web application. ActionForm is an abstract class
that is sub-classed for each input form model. When input form model is mentioned, what is
meant is that ActionForm represents a general concept of data that is set or updated by an HTML
form. For instance, there may be a UserActionForm that is set by an HTML Form. The Struts
Framework:

e Checks to see if a UserActionForm exists; if not, it will create an instance of the class.

e Struts sets the state of the UserActionForm using corresponding fields from the
HttpServietRequest, eliminating the need for complex request.getParameter() calls. For
instance, the Struts Framework can take fname from request stream and call
UserActionForm.setFname().

e The Struts Framework updates the state of the UserActionForm before passing it to the
business wrapper UserAction.

o Before passing it to the Action class, Struts also performs state validation by calling the
validation() method on UserActionForm.

Action class

The Action class is a wrapper around the business logic. The purpose of Action class is to
translate the HttpServiletRequest to the business logic. To use Action, a developer only needs to
subclass and override the process() method.

The ActionServlet (Command) passes parameterized classes to ActionForm using the perform()
method. Again, no more dreadful request.getParameter() calls. By the time the event gets to this
point, the input form data (or HTML form data) has already been translated out of the request
stream and into an ActionForm class.

Error classes

ActionError encapsulates an individual error message. ActionErrors is a container of ActionError
classes that the View can access using tags. ActionErrors is Struts’ way of keeping up with a list
of errors.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 55
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

0.1 ;#servlet 1
ActionServlet s o Action

(from org.apache. struds. action) «uses, Createsy ey org apache.struts.action)

' “wuses, creates» .

' =5, #instance 0.1

: #servlet0.1 -)
«uses, createsy ‘ - |

: _) | kUSeSy

' 0..1 #mappings| ~_tuses, creates»

ActionMappings """ ""° T iuses, createsy ActionMapping
(fom org apache stutsaction) .~ (from org.apache.struts.action)
wuses, createsy
#mappings 0.1

Figure 4.2-14: Relationship of the Command (ActionServlet) to the Model (Action)

ActionMapping class

An incoming event is normally in the form of an HTTP request, which the servlet Container turns
into an HttpServletRequest. The Controller looks at the incoming event and dispatches the
request to an Action class. The struts-config.xml determines what Action class the Controller
calls. The struts-config.xml configuration information is translated into a set of ActionMapping,
which are put into container of ActionMappings. (Classes that end with “s” are containers)

The ActionMapping contains the knowledge of how a specific event maps to specific Actions. The
ActionServlet (Command) passes the ActionMapping to the Action class via the perform()
method. This allows Action to access the information to control flow.

ActionMappings

ActionMappings is a collection of ActionMapping objects.

4.2.4 Data Access

4.2.4.1 Introduction

Data Access provides the ability of data to be persistent and to outlive an instance of a program.
It is central to all modern applications; however it does not come without its complexities.
Database programming and storage subsystems are complex. Object-oriented programming is
equally complex. The role of a Data Access component is to provide a subsystem that maps the
concepts of object-oriented programming to the aspects of database storage, such that a clean
separation of the two layers (objects and persisted data) is made. This separation enables each
of the layers to apply well known patterns for their problem domain without mixing the
complexities of each layer.

More importantly the use of a Data Access component, with clean separation of layers, enables
development teams to focus on business logic instead of the routine task of storing and retrieving
objects. The two primary goals of Data Access are:

e Provide reusable, technology-agnostic components for object/relational mapping

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 56
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Provide developers with a standard means of incorporating persistence functionality
regardless of the specific persistence technology being used.

The UCMS Framework realizes these goals in the Data Access Service component. This
component provides a standard interface for developers to incorporate persistence into their
applications. The implementation of this component and its dependent components used for
exception handling and logging are configured using the Component Configuration Service.

Some of the benefits of using this approach to Data Access include:

¢ No vendor lock-in by allowing mix-and-match of best-of-breed tools.

e Centralized resource management. Component Configuration Service manages the
initialization of the low-level data access technology.

¢ Clean handling of proprietary persistence errors with a standard suite of exception classes.
Application developers can avoid complex boilerplate error “catches”/"throws”.

¢ Integrated transaction management. The Data Access handles transaction semantics
including database rollbacks when exceptions occur.

The first section describes the Data Access Service. This is followed by a discussion on open
source persistence frameworks.

4.2.4.2 Data Access Service

Database

Figure 4.2-15: Data Access

The Data Access Service is a generic layer that encapsulates how data flows to and from the
Model Layer where business Domain Objects reside. In essence, the Model is unaware where
the data lives or how it is stored, this knowledge is exclusive to the Data Access Service which is
provided by the implementation of this service.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 57
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

winterfaces
9 BusinessQueryService

@ createQuery ()
@ createQueryFarameter [)

“COMPonents
% |Data Access Service wOfferss SLISE
€3 DataAccessService
@ malePersistent [)
@ delete () wirterfaces
@ fincByld ()) DatalccessService
@ fincByQuery ()
® maleTransient () o ® malePersistent ()
@ maleAlTransient () @ delete |)
3 BusinessQueryService @ fincByIc ()
@ createQuery [) @ fincByQuery [)
@ createQueryParameter [) @ malkeTransient ()
0 TransactionService @ malealTransient I: :|
@ bhegin ()
@ commit [) wofferss
@ rolllback: ()
«interface»

3 TransactionService

@ begin ()
@ commit [)
@ rollhack {)

Figure 4.2-16: Data Access Service

The Data Access Service Component provides three interfaces; the DataAccessService, the
TransactionService, and the BusinessQueryService. Each of these interfaces provide specific
functionality that together forms the Data Access Service Component.

The TransactionService interface provides the methods needed to begin, commit and rollback a
transaction. These methods offer user-friendly signatures to enable developers to work with Data
Access Service transactions.

The BusinessQueryService interface provides the methods to create new queries and new query
parameters to be added to queries. Custom queries can be specified using this interface which
allows developers to describe the query parameters and values independent of the specific
technology used to retrieve the data.

The DataAccessService interface is the primary interface for storing and retrieving business
Domain Objects. There are no inheritance requirements of the Domain Objects. The
makePersistent() method takes a Domain Object and stores it in database. The delete method
deletes an object from the database. The findByld() and findByQuery() methods are used to

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 58
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

retrieve objects from the database. The findByQuery() uses the BusinessQueryService to define
the query parameters used to identify the desired objects. The makeTransient() and
makeAllTransient() methods are used to detach a Domain Object from the Data Access Service.
The Data Access Service Component can be configured to automatically do this or to allow users
of the Component to manually detach the objects as needed.

The detachment of Domain Objects requires some further explanation. An attached Domain
Object can only be interacted with while in a transaction. It is initially populated with data from the
database, but based on the O/R mapping it may only be partially populated. When attributes of
the object are accessed that have not been populated, the Data Access Service populates that
portion of the database into the object. This model works very well with transactional
applications, but quickly breaks down when the data needs to be manipulated outside of a
transaction. When an object is detached from the Data Access Service, certain portions of the
object are populated that were not initially populated, while some portions remain unpopulated.
This enables the object to be used outside of a transaction and then reattached via the
makePersistent() method once a transaction has been re-established.

“Create

§ actori:Actorl O 0aSDatadccessSavice | | €3 TansactionSanice; TransactonSarnvice

DAS Implementation retieved &om TransactionService Implementation retrieved
ComparentonfigurationContext fram ComponentronfigurationCongent

1; bean | transactionMame ; String, das_exception ; DAS_StatTrarsactionFalecExcention | : LookalTransaction
retumne

2: bean
3 maePersstent | pojo : Object, ds_exception : DAS_Exception)
sgetume
4: mekePersstent
5t comimit { ds_exception : DAS_ComméFalecExcention

retuns
&2 commi

[if exception thrown
(X eception o] 1: rabadk: (das_exception ; DAS_Rokbecl FaledSeption)

«qetums
2 rolbad

Figure 4.2-17: Store Domain Object

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 59
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

This diagram describes the technology-agnostic interactions an actor (business application
program) has with the DataAccessService and TransactionService to store a Domain Object in
the database.

2 FindById
i actorl:Actorl {3 :BusinessObiject 3 DAS:DatabccessService £ TS: TransactionService
1: begin (transactionMame : String, das_exception : DAS_StartTransactionFailedException) LogicalTransaction
areturns
21 hegin

3: findById (objectType : Class, id : Object, das_exception | DAS_OhjectMotFoundException) Object
aretums
41 fincById
S: (Cast) to specific BO

aratLr
6: (Cast) to specific BO

[if autoTransient configured to false AND and you want a transient object to worl: with outside a transaction]
1 makeTransient (pojo : Object, das_exception | DAS_Exception)

areturme
2: makeTransient

7: commit | cdas_exception : DAS_CommitFallecdException)

areturm»
8 commit

Figure 4.2-18: Retrieve Domain Object

This diagram describes the technology-agnostic interactions an actor (business application
program) has with the DataAccessService and TransactionService to retrieve a Domain Object
from the database and to optionally detach the object from the DataAccessService.

4.2.4.3 Open Source Persistence Frameworks

There are a number of open source projects that offer implementations of object/relational data
access services. The Data Access Services Component was designed with these open source
frameworks in mind. Adapters can easily be written to incorporate the chosen open source
implementation.

Hibernate is a proven, popular, easy-to-use implementation of object/relational data access
services. Hibernate is a powerful, ultra-high performance object/relational persistence and query
service for Java. It supports development of persistent objects following common Java idioms -
including association, inheritance, polymorphism, composition, and the Java Collections
Framework. Hibernate enables expression of queries in its own portable SQL extension (HQL),
as well as in native SQL, or with an object-oriented Criteria and Example API. Its metadata
supports XML mapping files or annotations. More information about Hibernate can be found at
http://www.hibernate.org/.

4.2.5 Caching

4.25.1 Introduction

Caching provides a method to reduce database accesses, reducing time and resource utilization.
Often, the same objects or data are accessed again and again over a relatively short period of
time, and performing the same database queries repeatedly can be inefficient. Caching provides

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 60
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

http://www.hibernate.org/

a way to store the objects or data so that they can be re-used by the application more quickly,
perhaps without repeating the queries. The premise behind caching is to get objects or data once,
make them available more rapidly, and re-use them until other objects or data become more
important, and then use them to update the cache. For maximum benefit, this performance
enhancement can be done transparently for the programmer. By retrieving the data once and
using it across the system one is able to increase application performance by saving on the
roundtrip to the persistent data store.

A goal of the UCMS Framework is to provide a generic caching service that can be used by all
applications and layers. The caching service is intended for use with objects that have a long
lifetime and do not change often (i.e., are virtually “read only”). It is designed be flexible, so the
underlying caching implementation can be changed seamlessly if better algorithms are available
in the future, while staying compliant with a common specification (JSR 107 (JCACHE)).

The JCACHE specification request was submitted by Oracle. It specifies an API and semantics
for temporary, in-memory caching of Java objects, including object creation, shared access,
spooling, invalidation, and consistency across JVM's. Holding the objects in memory is much
faster than any disk access, but memory is limited, so JCACHE tracks the most-recently-used
objects since they are the most likely to be needed again.

The original specification for JCACHE is based on Oracle’s Object Caching Services for Java. It
attempts to standardize in-process caching of Java objects in a way that allows an efficient
implementation, and removes the burden of implementing cache expiration, mutual exclusion,
spooling, and cache consistency from the programmer. It is becoming the industry standard on
which caching solutions are built.

The following section describes how caching services are provided to UCMS applications via the
Caching Service Component.

4.2.5.2 Caching Service

Figure 4.2-19: JSR 107 Architecture

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 61
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

In the Caching Service Component, all access to the cache is through the class CacheAccess
and is structured according to JSR 107’s architecture.

Each CacheAccess has a simple integer “handle” that is associated with a region within that
cache and can be used to access any object in that region. The CacheAccess class serves two
purposes. The first is to provide a way of grouping objects in the cache, based on region name.
Secondly, it provides a single point of access for manipulating the contents of the cache. Objects
within a cache region can be grouped by defining a group within the region.

A region is a private name space defined within the cache. A user may define as many regions as
necessary for an application, although generally one per application is sufficient. All access to the
cache is through a CacheAccess handle, which is associated with a region. Region names are
programmer defined. All other objects (excluding other regions) in the cache are managed within
a region. Objects managed by a region must have a unique identifier.

A group is defined within a region. It is typically used to associate cached objects or other groups
that should be invalidated together or that have a common set of attributes. An object can belong
to only one group at a time; therefore objects assigned to a group must be unique. The attributes
of a group object may apply to the group as a whole or be inherited by the object of the group if
attributes aren’t explicitly defined for the object. There is currently no concept of a group update.
Members of a group need to be updated individually. Destroying a group will destroy/invalidate all
members of the group including the group itself.

The following diagram shows the sequence of actions associated with retrieving an object from
the cache, including the name of the participating systems/components that participate in the
process.

i :Client code {2 :CachingServicelml 3 cachelccess:Cachelccess

1: get [cachedOhijMame : Object) @ Object

1.1: getCachefcaess () 1 CacheAccess

CacheServiceImpl getCacheAccessByDefaultRedion

wraturms
1.8 getCachelccess

1.2: get { name : Object) : Object

sreturms

“retLTs 1.4: get

2: get

Figure 4.2-20: get(Object cachedObjName)

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 62
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The Caching Service Component provides user-friendly method signatures to handle caching for
the application. Key functions provided via the Caching Service interface include:

e Get/Put Cached Object — Provides variations including:
- Get/Put Cached Object with cached object name, group name, region nhame
- Get/Put Cached Object with cached object name, region name
- Get/Put Cached Object with cached object name, group name, default region name
- Get/Put Cached Object with cached object name, default region name

o Define Group — Creates a hew group within the cache region. Groups provide a logical
grouping of objects in the cache so they can be loaded or invalidated concurrently. Group
names must be unique within the region. Object names must be unique within the scope of
the region not the group.

o Replace Cached Object — Creates a new version of the object identified by name, replacing
the current version with the object being passed in. If the object doesn’t exist in the cache,
the replace operation is equivalent to a put. The attributes are inherited from the existing
object or, if no object exists, from the group or region the object is associated with. Names
are in the scope of a region so they must be unique within the region where they are placed.

o Get Attributes — Returns an attribute object describing the current attributes associated with
the object name (if given) or returns the attributes object for the specified/default region name
(if no attribute name is given).

o Reset Attributes — Allows some attributes for a region to be reset.

e Invalidate — Marks all objects within the scope of name as invalid if the object name is given,
or marks all objects in a specified/default region as invalid if the object name is not given. If
name refers to a group object, invalidate cascades to all objects associated with the group or
any subgroups.

e Destroy — If an object name is not given, destroy will invalidate all objects within the
specified/default cache region, removing all references to the objects from the cache
including any loader(s) registered for the object(s). The CacheAccess object can no longer be
used as it is closed. If an object name is given, destroy will invalidate all objects associated
with name, removing all references to the objects from the cache including any loader
registered for the object.

The implementation of the service interface serves as the facade of class CacheAccess from the
UCMS Framework.

4.2.5.3 Framework Caching Support

The caching component behind the Caching Service interface implements a seamless swapping
of caching technologies that are based on the JSR standard. This is achieved through standard
design patterns such as Interfaces, Concrete Factory and Abstract Factory. These were derived
from the original IBM J2EE Framework class known as Quartz, as shown in the following
diagram:

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 63
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Cuartz Desion Cverview
Chmileana

sl vid

hwilcanai]

e Fapea nger: Tangl ived

§ e vk) vod

riExwloam Enchei] ; Oache 4 bt
itk o e Ccha cosnn
inched cmm moin © S : Oacheh comn
hene| - bap

i gy g
¥ i ke g Mg

s Chjecl, p: Sang shy: CkRchi: wie
o Afriban1,

e el sy Yo, o s o ey i

pinca s Cbiecs oy © Dbwcd: Obsce

wpinca s Cbec g : eirg o Cbied : Ohect

kot Bl Mg IrsGeapmns : Srirgs: wié
} IreGapamns : Srirg, prap - Syl < i
LTS ST . irGeapaurs : Dring mir oA dibuie): e

o irGeapaurs : Drirg peap @ Do vk isbai: wd

Treilbc o Soarg, mir A abuw: e

e iretpc i mare - Obiec, o Soing, o - Adrbusa) (i

ik ikl Afrbam

Sting Wg : DbEC e Praswras : Oty

ritpchl]: Coecion

Figure 4.2-21: Cache Processing Class Diagram

The object model can be separated into two logical views: the Cache Access view, which centers
on access to the cache and its data, and the Cache Administration view, which focuses on
loading data into the cache and providing administrative features.

The Cache Access components include:

e CacheAccess — This class provides an API for accessing the cache. Users can make a
simple call to the caching service to add and also retrieve object from the cache.

e CacheContext — This class provides a single access point for the caching service. This is
where the cache gets initialized. During initialization, the default cache configuration file is
read and the cache is setup. The context also provides access to the interfaces for
manipulating and managing the cache via the CacheAccess and Cache respectively

e CacheContextFactory — This is a singleton factory class. It is responsible for creating a
CacheContext instance.

e CacheAccessImpl — This class provides the default concrete implementation of the
CacheAccess interface. This class stores the cache objects for its associated region name.
Instead of having a single physical data store for cached objects they are stored in multiple
data stores based on their region. Object within a cache region are stored and retrieved
based on a unique key.

e Attributes -- The Attributes class defines properties of how an object should be managed by
the cache. Each object in the cache has an Attributes object associate with it. There is a
default Attributes object that is applied to each object in the cache, if one is not defined at the

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 64
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

time it is placed into cache. Attributes for a given cached object can be retrieved by its unique
key. Attributes can be assigned to a cached object, a group, and a region.

e CacheObjectinfo — This class stores both informational and some statistical data about a
cached object. CacheObjectinfo for a given cached object can be retrieved by its unique key.

The Cache Administrative components include:
e Cache — This class provides advanced features for administering the caching service.

e CachelLoader — To take advantage of automatic loading, a CachelLoader object is used and
its load method is implemented to insert objects into the cache. The CachelLoader can be
invoked directly by calling the CacheAccess.preLoad() method.

e Configuration —There are two required configuration files for the caching functions: The
bootstrap properties file contains the default values for initializing the cache. The
quartz_config.xml file provides a way of grouping CacheLoader classes that need to be
loaded into cache.

4.2.6 Exception Handling

4.2.6.1 Introduction

Applications can differ on how they need to treat specific exceptions, but a common interface is
highly desirable. Policy-driven exception handling is needed. Thus, an Exception Handling
Component is part of the UCMS Framework.

Requirements met by the Exception Handling component include:

e Allows components that generate or catch (respond to) exceptions to determine the
appropriate exception handling policy for that exception. The source of the exception can be
generated by the application, or the runtime environment (i.e., J2EE container, database,
communication, etc.)

¢ Exception handling polices are defined external to the application.
e Supports multiple exception handling polices, such as:
- Re-throw current exception
- Throw a replacement exception.
- Throw a replacement exception and nest the current exception.
- Replace current exception with a system boundary exception (i.e., SOAP Faults, etc.)
e Supports custom exception handlers.
e Supports the ability to chain exception handlers.
This section describes the Exception Handling Component.

4.2.6.2 Exception Handling Component
The functionality of the Exception Handling Component can be broken down into the following:

e Initialize Generalized Policy framework

The policy framework defines a set of policies that are used by the exception handler
framework to delegate a particular exception to an appropriate handler based on the returned
policy. A policy can have a list of Factors that are referenced by the policy and specify
matching parameters, a list of Actions to be taken if exceptions occur, and the handler to use
to process an exception, along with a set of parameters that are used to achieve this.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 65
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Initialize exception handling

The Exception Handler initialization retrieves the generalized policies from the policy
framework, converts them generalized policies to a useable form called ‘HandlerPolicies’, and
defines four hash maps that contain the policies. The first map holds policies with a complete
set of matching exception, class, and method. The second map contains policies that have
only a matching exception and class, the third map contains policies that have only a
matching class and method, and the fourth map includes policies that have only a matching
exception. This provides a consistent way to deal with exceptions ranging from the very
generic (map 4) to the very specific (map 1).

e Invoking exception handling framework

The Exception Handler receives the request to handle a particular exception. It retrieves the
policy for the particular exception based on a matching policy for the Exception’s Exception
class name, Trapping class nhame, and Trapping method name, and the handler delegates
the action to one of the Handler Action classes to perform one of the following handler
functions:

- Log Handler — Delegates the action to the Logging APl component.

- Replace Handler — Replaces the exception with another exception and throws the
exception back to the exception handling framework.

- Rethrow Handler — Rethrows the current exception back to the exception handling
framework.

- Wrap Handler — Wraps the exception into another exception and throws it back to the
exception handling framework.

- Custom developed handler

. «interfaces
«interface» @ PolicyLoader
O List @ getPolicies () : Map
«interface» & Policyl oader_impl -
@ Policy < processinheritence () © JAXBPolicyLoader
@ getlD () & getPolcyActions () : Map
@ gethame () & getPolcyFactors) : Map
@ getDormain () o getPolicyImp! () : Map

@ getParentID ()

@ getActions () : List
@ getFactors () @ List
@ getDescription ()

3 Policy_impl

& done () : Map
& merge ()2 Map

«interface»
© Map

Actions and Factors can each use
this structure

«interfaces»
@ PolicyComponentDefinition
@ getiame () : String
@ getConfiguration () : String
@ getParameterConfiguration () : String
@ getParameters () : Map
@ setMName (newValue : String)
@ setConfiguration (newValue : String)
@ setParameterConfiguration (newValue : String)
@ setParameters (newValue : Map)

(& PolicyComponentDefinition_impl

Figure 4.2-22: Implementation of Policy Component

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016

Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

66

As depicted above, the Policies are defined in an XML format, and the JAXBPolicyLoader is used
to do the initial xml-java binding using Java Architecture for XML Binding (JAXB). All Factors and
Actions and their parameters are stored in the PolicyComponentDefinition class. Policies are
defined in an inheritance mechanism, and the PolicyLoader is used to process the policies for
inheritance and basically includes all parent policies into the child policies. The Policies are then
represented in an optimized HandlerPolicy format to enable searching for the correct policy.

erierfaces
© ExceptionHandlerService
@ handke { e - Excepbon, tappingClass - Cass, methodName : StTing) eirtertaces
@ handke { 2 - Excepbon, trzpongCiass - Cass)

@ fndPolcy [MatchedPoioResull poky }

© ExceptionhandlerService_mpl

fincPoicy ()
kadPolices ()
construciPolcoyResult () N
"3;:33%‘:;:]' () -ntefﬁp;mcer esul
v tebot ()) Matched: it
processPoboyResul () 0 Ty
& handie(Exception e, Uzss ¢, String method) () ® getoicy () 'y
& constructPoicyResult{) () S DncON L)
& setPolor ()

& processPobcoyResul
& getHandlerActonDeiegete() ()
& g=tParamet)

@ getExceptionCiass [)
& setbxceptionCiass [)
& getTrappnoCass ()

@ handle { MatchedPoicyResult policyResul, Object customParemeters)
G ReplacerAction © WrapperAction
" LoggerAction

(3 CustomHandler

Figure 4.2-23: Implementation of Exception Handler Component

As depicted above, when the ExceptionHandlerService is called through the handle() method that
constitutes the public API, the component looks up the policy for the exception based on the
parameters (Exception class, trapping class, trapping method) passed in the handle() method.
Based on the policy returned by the policy framework, the component delegates the action to one
of the handler classes thru the HandlerAction interface which contains the following handlers: Log
Handler, Replace Handler, Rethrow Handler and Wrap Handler.

4.2.7 Logging

4.2.7.1 Introduction

Almost every large application includes its own logging or tracing API. Logging is an important
aspect of the development cycle:

e It can provide precise context about a run of the application.

e Log output can be saved in a persistent medium to be studied at a later time.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 67
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e A sufficiently rich logging package can be employed as an audit tool.

¢ Inserting log statements into code is a low-tech method for debugging. It can also be the only
way to debug some multithreaded applications and distributed applications.

It is desirable to have a common interface to a logging service that is independent of the
implementation of that service. Thus, a logging solution is part of the UCMS Framework.
Requirements met by the logging solution include:

e Must allow an application to store messages in different locations. In general, the end users,
system administrators and software developers will use these messages.

e Operations should be made as inexpensive as possible. A logger allows application code to
produce fine-grained logging when needed but not slow the application in normal production
use.

e Should provide mechanisms to dynamically change configuration on where to log messages
and what messages to log.

e Logging code is left in an application that goes into production, so the logging cost should be
very little at runtime when it is not being used. To help achieve this, the logging system
should define various logging levels.

e Should provide a set of pre-defined handlers and should allow attaching new handlers if
required. Handlers are used to publish log messages. It should be fairly straightforward to
develop new Handlers. Developers requiring specific functionality can either develop a
Handler from scratch or subclass one of the provided Handlers.

e Should support a Formatter to localize and format the message before publishing. The
component should provide some of the pre-defined formatters and it should be fairly easy to
create new Formatters if required.

e Should provide means to further control what records get logged, using filtering. The
components should support custom filters.

e An application can be broken down into different “areas” based on the package prefix of the
classes involved. As a result, an entire application can be organized in a tree structure (the
familiar dotted-name structure for that application). The logging component should allow
setting different logging levels for different "areas" of the program, based on a match with the
corresponding section of the tree. The Logging component should allow controlling things at
the package level, or a set of packages levels.

e Should support multiple loggers to be active simultaneously. Logging configuration should be
loaded from the properties or XML file. The component should support simultaneous log
locations. The following log locations must be implemented; event log, email message,
database, message queue, text file and Windows Management Instrumentation (WMI) event.

e Should provide an independent abstraction of logging toolkits available in the market. The
logging services should be independence of logging products or specific logging APIs.

e Should handle more complex logging of Objects such as CBEs (Common Base Events).

The UCMS Framework solution for logging utilizes log4j, an extremely reliable and robust logging
framework as the base technology. This is integrated with the rest of the UCMS Framework via a
Logging Service interface that is exposed to the applications. This section describes these
components.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 68
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.2.7.2 Logging Service

The following UML class model describes the public interface of the Logging Service. This model
serves as the API for consumers of this service.

O LoggnaSeraceractory
¢ OMIILOONS R YE b L LU e = O LoD e e e gl)
© v s ds (hgope | Dt) Logangeer v
0 e mogprasans () Loga e s
B oeaDwba L oot v LoaR e

=watantite -

b tae
O Logangsavion

& wlogieesd | ogtesd | int | skl

Ofhweed {)L

AeewslBrubie | bagwmsd | 0t) | Dok

@ 000 | ogger O t, frenadon | Olpeet | vind

O rfu | g O t, oo C O, 1 Thiomwadis) mnd
® wan oo ; Obscl, immasags - Ot | | wout
& wam § bogoe | Obpsct, mmasags - Olpct, b @ Thimmatds | woad

& s | bogges - Otmsct, message | Dbt) 1 vond
® anor | boges - Obpsct, mesesage | Dbgect, t1 Theowabdes) 1 vad LOG LEVEL DOMFID . it
o ol oo Obsext | 1 wond LOG LEVEL OOMTE STHING | Wy

® datad (oo Otgert, t: THrowatds 1 vod LOG LIVEL PR v

® g | bgger - Otgect, msesagn | Object) ! voed LG _LEVEL FINE STRING | Sting

® by | Doger - Otgect, oty @ik, ewesagm @ Obpact | | wd LOG_LEVEL FINER : it

® by | boogsr - Otyect, priciky @ e, meeadw | Obigect, T Thowatle | . sl i LE F R : S

® by | oot - Obect, pricdky @It medados | Obipect, sourcn | Chs | & sl A0 LEVEL FINEST it

® oy | Most - DRt (rry I, mwenaoe © CURCE, souein - Chas, € Thromatbe | wdd L0G LEVEL FINEST STRYSG | g
® by | hogust - Ogect, (ricry | 8, et © Olpact, seasis : Clan, et | 90N | ekl UL LAESL SEFAAT (1

@ by | bgger - COpect, (ceky | e, mwesagm | Ol t, woscs - Clw, cordeat | Gt £ Thomaths | sl LOG LEVEL DEFA LT _STRING C Sting

® g { oo | Olpsct, rmsage - Ctipect |
0 Moy Cogow e b, irwsans - Otoect, Hyomabds @ Thiowals |

Figure 4.2-24: Logging Service Class Diagram

LoggingService is the main interface for the Logging Service; it allows logging of messages of
various types or levels (debug, info, warn, error, fatal).

Clients of the Logging Service typically “dependency inject” the Logging Service in their
components. Note that the LoggingService can also be obtained through a Factory,
LoggingServiceFactory. The Factory is provided for those components which do not use
“dependency injection” (for example, the Component Configuration Service uses the
LoggingServiceFactory because it cannot use DI since it is the DI provider).

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 69
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

«interfaces
0 LoggingService

(& LoggingService _Impl
o logger : Object
o ppallogContext @ LogContext
@ getlogger () : Object
@ setLogger | newLogger @ Ohject)
@ getOpallogContext ()
@ setOpalLogContext [newOpalLlogContext)

IS

«interfaces
O LogContext OPAL

Figure 4.2-25: LoggingService

Note in the above developer’s view that LoggingService_Impl is the default implementation for
LoggingService, leveraging the log4j functionality, although other logging frameworks such as

JLog, syslog, JDK 1.4 Logging and others could be used if desired.

70

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.2.7.3 Framework Logging

creates a log context and [
in the process can invoke
the appropriate adapter of LogContextFactory
the LogContext interface
to actually create
Category of Log4d,

MessagelLogger of JLog or |
Syslog of Syslog |

Provides the AN

api of what is
expected of a

Provides the handler that is
logging api . physically
1. writing the

LogHandler information to
Sample AN a destination
im plement aticns
-onewrites to a
fle, the other

writes to a :
console FileLogHandler ConsoleLogHandler

LogContext

Figure 4.2-26: Logging Support in UCMS Framework

UCMS Logging support is used for two main purposes:
1. To provide a logging architecture that is structured in a way that it can be easily enhanced.

2. To act as an adapter framework so that one can use the logging method calls throughout the
application and delegates the responsibilities to the appropriate framework one has chosen
for logging. For UCMS, this is log4;.

The way one integrates with a logging framework is to write a single adapter class that
implements the LogContext interface and adapts the logging API of the LogContext interface to
the log manager object of the desired logging framework. In the case of UCMS, the UCMS
Framework does this using a standard extensions library that provides an adapter class for log4;.
4.2.7.4 log4j

In early 1996 the IBM EU SEMPER (Secure Electronic Marketplace for Europe) project decided
to write its own tracing API. After many enhancements and multiple incarnations, that APl was
donated to the open source community, and evolved into log4j, a popular open source logging
package for Java.

In looking at the architecture of log4j, the basic features of any logging library are exposed:
1. control which logging statements are enabled or disabled,
2. manage output destinations, and

3. manage output format.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 71
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The first feature corresponds to the Logger, the central class in the log4j package. The second
feature is implemented by Appenders. There are appenders for files, the console, Unix Syslog,
NT Event Log, remote servers, SMTP e-mail, etc. The third feature is implemented by Layouts.
The most popular layouts are the PatternLayout and HTMLLayout. The three components work
together to enable developers to log messages according to message type and priority, and to
control at runtime how these messages are formatted and where they are reported.

Category hierarchy?

The first and foremost advantage of any logging API over plain System.out.println calls
resides in its ability to disable certain log statements while allowing others to print unhindered.
That capability assumes that the logging space, that is, the space of all possible logging
statements, is categorized according to some developer-chosen criteria.

In conformance with that observation, the org.log4j.Category class is at the core of the
package. Categories are named entities. In a naming scheme familiar to Java developers, a
category is said to be a parent of another category if its name, followed by a dot, is a prefix of the
child category name (the dotted-name mechanism described earlier).

In the Category class, invoking the static getRoot () method retrieves the root category. The
static getInstance () method instantiates all other categories. getInstance () takes the
name of the desired category as a parameter. Some of the basic methods in the Category class
are listed below:

package org.log4j;
public Category class {
// Creation & retrieval methods:
public static Category getRoot();
public static Category getInstance(String name);
// printing methods:
public void debug(String message);
public void info(String message);
public void warn(String message);
public void error(String message);
// generic printing method:
public void log(Priority p, String message);

Categories may be assigned priorities from the set defined by the org.log47j.Priority class.
Although the priority set matches that of the Unix Syslog system, log4j encourages the use of
only four priorities: ERROR, WARN, INFO and DEBUG, listed in decreasing order of priority. The
rationale behind that seemingly restricted set is to promote a more flexible category hierarchy
rather than a static (even if large) set of priorities. Customized priorities may be defined by
subclassing the pPriority class.

3 Excerpted from “Log4j delivers control over logging”, by Ceki Gulcu, IBM developerworks and JavaWorld

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 72
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

To make logging requests, invoke one of the printing methods of a category instance. Those
printing methods are:

e error()

e warn ()
e info()
e debug()
e log()

By definition, the printing method determines the priority of a logging request. For example, if c is
a category instance, then the statement c.info ("..") is alogging request of priority INFO.

A logging request is said to be enabled if its priority is higher than or equal to the priority of its
category. Otherwise, the request is said to be disabled. A category without an assigned priority
will inherit one from the hierarchy.

Below is an example of that rule:

// get a category instance named "com.foo"

Category cat = Category.getInstance('com.foo");

// Now set its priority.
cat.setPriority(Priority.INFO);

Category barcat = Category.getInstance('com.foo.Bar");
// This request is enabled, because WARN >= INFO.
cat.warn("Low fuel Tevel.");

// This request is disabled, because DEBUG < INFO.
cat.debug("starting search for nearest gas station.");
// The category instance barcat, named "com.foo.Bar",
// will inherit its priority from the category named
// "com.foo" Thus, the following request is enabled
// because INFO >= INFO.

barcat.info("Located nearest gas station.");

// This request is disabled, because DEBUG < INFO.
barcat.debug("Exiting gas station search");

Calling the getInstance () method with the same name will always return a reference to the
exact same category object. Thus, it is possible to configure a category and then retrieve the
same instance somewhere else in the code without passing around references. Categories can
be created and configured in any order. In particular, a parent category will find and link to its
children even if it is instantiated after them. The log4j environment typically configures at
application initialization, preferably by reading a configuration file, an approach discussed below.

Log4j makes it easy to name categories by software component. That can be accomplished by
statically instantiating a category in each class, with the category name equal to the fully qualified
name of the class -- a useful and straightforward method of defining categories. As the log output
bears the name of the generating category, such a naming strategy facilitates identifying a log
message's origin. However, that is only one possible, albeit common, strategy for naming
categories. Log4j does not restrict the possible set of categories. Indeed, the developer is free to
name the categories as desired.

Appenders and layouts

Log4j allows logging requests to print to multiple output destinations called appenders. Currently,
appenders exist for the console, files, GUI components, remote socket servers, NT Event
Loggers, and remote UNIX Syslog daemons.

A category may refer to multiple appenders. Each enabled logging request for a given category
will be forwarded to all the appenders in that category as well as the appenders higher in the

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 73
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

hierarchy. In other words, appenders are inherited additively from the category hierarchy. For
example, if a console appender is added to the root category, all enabled logging requests will at
least print on the console. If, in addition, a file appender is added to a category, say C, then
enabled logging requests for C and C's children will print to a file and on the console.

More often than not, users want to customize not only the output destination but also the output
format, a feat accomplished by associating a layout with an appender. The layout formats the
logging request according to the user's wishes, whereas an appender takes care of sending the
formatted output to its destination. The PatternLayout, part of the standard log4j distribution,
lets the user specify the output format according to conversion patterns similar to the C language
printf function.

For example, the PatternLayout with the conversion pattern $r [%t]%-5p %c - %m%n will
output something akin to:

176 [main] INFO org.foo.Bar - Located nearest gas station.

In the output above:

e The first field (%r) equals the number of milliseconds elapsed since the start of the program,
i.e., the “runtime”

e The second field (%t) indicates the thread making the log request
e The third field (%-5p) represents the priority of the log statement
e The fourth field (%c) is the name of the category associated with the log request

“ o

The standalone “-“ indicates the start of the actual output. Parameters after the - represent the
output to be sent. The first (%m) indicates the statement's message (in this case, “Located
nearest gas station”). Usually, a %n is used to indicate that a newline (carriage return / line feed)
should be sent after the message.

4.2.8 Messaging

4.2.8.1 Introduction

The ability to send and respond to messages is a common concern in UCMS applications and so
it is addressed by the UCMS Framework. Requirements met by the messaging solution include:

e Provides an implementation of common messaging design patterns such as Send-Forget
(Fire-Forget), Request-Reply and Group of messages.

e Provides configurability for the location of destinations.
e Provides base classes which encapsulate repetitive Java Message Service (JMS) code.
¢ Responsible for initializing and finalizing the underlying messaging system.

e Messaging is based on JMS v1.1 and makes use of a Unified domain approach using domain
specific extensions provided in JMS1.1 viz. MessageProducer and MessageConsumer.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 74
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

- T, 1 S
Jawaw yre LI el .
- 1
. = %
Ve 0.1
.’v 'y \

aretirtiotae "VeENtitas \
Fi

Vioukd bes port of DI Ughtvesght contaree

y
Hokh sapdcs confiraton
formatson The wil be sans
=T B conteat pooresd By D]

Uoh'-\‘rﬂ cortores = Sprg
1 [T ——|

DI

EXDMLONTN chrens

B T |
, !
“nte tack G Wassaartenrica_igl \ !
3 A e \
EADATONYX.OMS
W MR eI |)
® MemagngP attem gstMsusa i Fotten ()
® v cereessage [rsagngPattan)
O vl v mapedderrage (messigiogPattem)
O MaagnPaktanFactory O NessaorgPattem

5 patter nHama 58 NG

® sgeton |) 0 pAtEATIPE ST
® CreataMesagngPttan |) o nervieDwet atinliane
o gyncocicey Sting

0 recetsa Destinbonilms

= m’f"’“"” ”‘t"'i\’-' It b ot reoubed o Ently L mencored
. - recat : | B vucelniNasiags [* hare o conplatuness. It wil rksrcapt
Vs ¢ KIHEReR = trmecut ke S Raquast a0 Ramonsa can ba
L] AT IR - - = MaWat bocka wsod for Nodt, Accece Cootrd and Bt
a rrwoknFadts [4] Mantomng using M5 and MgSerus.

| 7® s Pemags (neemogngPstemn)
® recetasifewaoe (MragngPattan)

Figure 4.2-27: Logical View of Messaging Framework

As shown above, the implementation of these requirements is met by a Messaging Service
component, which provides the application interface, and by the UCMS Framework component

that deals with enterprise messaging providers. This section describes these messaging UCMS
Framework components.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 75
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.2.8.2 Some Background on Messaging*

Enterprise messaging frameworks are designed to enable one or more applications to
communicate despite a variety of obstacles such as incompatible formats, information sequence,
user locale and language, etc. Common barriers include the requirement that both systems be
running at the same time (synchronous communication), the need for multiple applications to
receive the same message (multiple transmissions), the heterogeneity of most systems, and
potential network failures.

Typically, enterprise architectures rely on message-oriented-middleware systems (MOMSs) to
channel messages between disparate systems. MOMs provide a common and reliable way for
applications to create, exchange, and process messages without regard for the implementation
details of the messaging client. Messages are sent to server destinations and domains rather
than physical addresses. Messaging clients simply declare interest in a particular domain and
destination, provide the proper security tokens to gain access to the domain in question, and then
interact with the messaging server through that destination.

In a MOM system, clients are decoupled from one another, allowing them to maintain optimum
quality of service without actually having to be "online" every second of the day. Once the
requirement that applications always be available is removed, maintenance and scalability are
much easier to manage. Applications can be brought down, updated, or refreshed for routine
maintenance at almost any time of day, without affecting quality of service.

Java Message Service (JMS)

MOM servers allow disparate systems to exchange messages, but each MOM vendor has a
proprietary API for handling messages. This lack of standardization is unacceptable in the Java
technology development paradigm. To take advantage of the existing infrastructure of MOMs
without sacrificing standardization, the J2EE platform offers JMS.

JMS defines the rules for message delivery in Java enterprise systems, and also declares
interfaces to facilitate message exchange between application components and messaging
systems (typically MOMs). JMS clients open connections to destinations on the MOM server and
then send and receive messages on those destinations. JMS offloads the responsibilities of
guaranteed delivery, message natification, message durability, and all of the underlying
networking and routing issues to the messaging system. JMS and MOMs work well together
because they divide responsibility between message clients and the messaging server.

Types of messaging

JMS supports two fundamental messaging mechanisms. The first is point-to-point messaging, in
which a message is sent by one publisher (sender) and received by one subscriber (receiver).
The second is publish-subscribe messaging, in which a message is sent by one or more
publishers and received by one or more subscribers. While these two mechanisms are the actual
foundation of JMS, many view the technology in terms of its three messaging models:

e One-to-one messaging is a point-to-point model. A message is sent from one JMS client
(publisher) to a destination on the server known as a queue. Another JMS client (subscriber)
can access the queue and retrieve the message from the server. Multiple messages may
reside on the queue, but each message is removed upon retrieval.

e One-to-many messaging is a publish-subscribe model. A JMS client still publishes a
message to a destination on the server, but the destination is now referred to as a topic. The
key difference here is that messages placed in a topic include a parameter that defines the
message durability (how long it should remain on the server awaiting subscribers). The

4 Excerpted from “J2EE pathfinder: Enterprise messaging with JIMS” by Kyle Gabhart, IBM developerWorks

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 76
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

message will remain on the topic until all subscribers to the topic have retrieved a copy of the
message or until its durability has expired, whichever comes first.

e Many-to-many messaging — also a publish-subscribe model, extends one-to-many
messaging. In addition to supporting multiple subscribers, this model also supports multiple
publishers on the same topic. A good example of many-to-many messaging would be an e-
mail listserve: multiple publishers can post messages on a topic, and all subscribers will
receive each message.

Session beans and JMS

Session beans are designed to fulfill requests for business services. To the extent that an
enterprise messaging system must be utilized to fulfill such a request, it (the enterprise message
system) can be accessed transparently via a session bean. Combining session beans and JMS
is a sensible enterprise-oriented solution. Using a session bean as a JMS client incorporates the
JMS communication into the context of a larger business transaction. For example, a J2EE
transaction could be set to retrieve a message from a JMS provider, extract data from that
message, and then attempt to update the database. If the update fails, the transaction is rolled
back, and another message can be sent to the JMS provider on a separate destination,
describing the reason for the failed transaction.

Enterprise JavaBeans use resource manager connection factories to access extra-container
resources. The resources are standard enterprise components that are not a core part of a J2EE
container, including data sources, JMS sessions, JavaMail sessions, URL connections, and Java
Connector Architecture (JCA) adapters. The resource manager component of a J2EE container
manages the entire lifecycle of a particular type of resource, including connection pooling,
transaction support, and necessary network protocols that make the actual connection possible.

Three steps enable an enterprise bean to obtain a connection to a JMS session: a Java Naming
Directory and Interface (JNDI) lookup obtains a connection-factory reference, a connection is
obtained via the factory reference, or the topic or queue connection object is used in the normal
fashion for JMS. Because JMS must be supported by any J2EE-compliant application server, no
additional libraries or components are required.

Combining JMS and session beans is a step forward in terms of enterprise functionality, and they
reduce maintenance costs by relieving the programmer of substantial extra coding overhead, but
they are not as simple or flexible as using separate mechanisms, and they impose additional
restrictions (below). Using session beans provides the application developer access to the full
range of J2EE functionality afforded by the EJB container, including JNDI, declarative transaction
semantics, automatic concurrency support and resource management, declarative security, and
access to other enterprise resources such as entity beans, datasources, JavaMail, and JCA
adapters. From a messaging standpoint (unlike message-driven beans), the session bean-JMS
combination imposes no limit on the number of topics and queues that your bean can access.

In exchange for enhanced enterprise features, asynchrony is sacrificed. Asynchrony is one of the
major advantages of using an enterprise messaging technology like JMS, and losing it is no small
thing. With JIMS, messaging clients can send messages via the provider and then go offline,
leaving the provider to transmit the message as time allows. Receiving clients can either log on
periodically and check for new messages or set up a listener component that is always online
awaiting new messages from the provider. Session beans are synchronous, and so cannot
support the "always-on" listener component. Instead, a synchronous Java client must invoke a
session bean method. The session bean method then opens a connection with a messaging
provider to send and receive messages. To restore the simplicity while maintaining the
advantages of stand-alone messaging components, a new approach was needed.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 77
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Message-driven beans

The EJB 2.0 specification defined a new type of enterprise bean. The new bean type, message-
driven beans (MDBS), is intended to provide a reusable J2EE messaging component that can
leverage existing investments in J2EE application servers, and EJB technology specifically.

MDBs are only intended to be invoked asynchronously through a JMS message. As a full-fledged
JMS client, MDBs can both send and receive messages asynchronously via a MOM server. As
an enterprise bean, MDBs are managed by the container and declaratively configured by an EJB
deployment descriptor.

Message-driven beans are a powerful messaging solution on their own. Because they are
specifically designed as message consumers and yet are still managed by the EJB container,
MDBs offer a tremendous advantage in terms of scalability. Because message beans are
stateless and managed by the container, they can both send and receive messages concurrently
(the container simply grabs another bean out of the pool). This, combined with the inherent
scalability of EJB application servers, produces a robust and scalable enterprise messaging
solution.

4.2.8.3 Messaging Service

The UCMS J2EE Messaging Service component provides a layer of abstraction for messaging
systems. Clients of the Messaging Service are coded to a generic API, and configuration details
specific to a messaging system are delegated to an XML configuration file.

The Messaging Service is primarily an implementation of commonly used messaging patterns
including Send-Forget, Request-Reply, and Grouping of messages.

The Messaging Service Component provides messaging capability based on JMS1.1 Unified
domain Interfaces like ConnectionFactory, Connection, Destination, Session, MessageProducer,
and MessageConsumer.

The Messaging Service supports various message types similar to message types provided in
JMS1.1. The message types that Messaging Service supports are: String Message, Stream
Message, Object Message, Map Message and Bytes Message.

The Messaging Service provides synchronous sending and receiving of messages. |If the
application requires asynchronous message listening capabilities, it has to implement the Listener
provided by the Messaging Service. Those listeners have to be registered with the Messaging
Service.

What follows is the component model for the Messaging Service.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 78
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

«component»
= |Component configuration

«Lse»

«component»
= |Logging Service

«component» «component»
= |Exception Handling = _|Messaging Service
A MessagingService
- MessageAdminService

«Lse»

«Lisen o
€ MessagingService

@ registerMessageListener ()
@ getProducerMessagingPattern ()
@ createMessage ()
@ sendMessage ()
@ receiveSyncMessage ()
@ stopMessageListener ()
@ getConsumerMessagingPattern ()
@ getRequestReplyMessagingPattern ()
@ browseMessages ()
3 MessageAdminService
@ finalize ()

«interface»
) MessageAdminService

@ finalize ()

Figure 4.2-28: Messaging Service Component Model

Send and Forget Processing

In this scenario the sender of the message does not care about receiving a response back,
placing the message in the queue is all the application is concerned about. This scenario is also
used in web applications where a response it not needed immediately, such as when an email will
be sent out as a response.

In Send and Forget, a messaging client calls the getProducerMessagingPattern() method to send
messages. A client calls the getConsumerMessagingPattern() method to consume messages.

Request and Reply Processing

This is usually a synchronized scenario between one or more clients and one server. A request is
placed in a queue which is serviced by a replier. The replier examines the request and places a
response back, usually in a queue determined by the request.

The requester can then retrieve information on the reply queue. This is the most common
scenario used in web applications in which existing functionality is exposed though a messaging
channel.

For requesting the message in a Request-Reply scenario, a messaging pattern is first created by
invoking the getRequestReplyMessagingPattern() method. Then calling createMessage() creates
the request message. Invoking the sendMessage() method sends the request.

For replying to a request message in Request-Reply, a messaging pattern is created by invoking
the getRequestReplyMessagingPattern() method. To receive the request message, the
ReceiveSyncMessage() method is called. Then the reply message is created by invoking

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 79
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

createMessage, by using the pattern obtained from receiveSyncMessage(). Invoking
sendMessage() sends the reply.

To receive reply message asynchronously the messaging client has to implement the
AlTMessageListener interface’s onMessage() method and consume it. If for Asynchronous
messaging the client is using an MDB then the MDB class has to extend
AlTMessageListenerAdapter.

The messaging service implementation and connection to JMS are in Onyx.

4.2.8.4 Framework Enterprise Messaging Support

The UCMS Framework provides support for Enterprise Messaging, for use with Java Message
Service (JMS). There are two types of messaging models, publish-and-subscribe and point-to-
point queuing.

Messages can be delivered asynchronously or synchronously. As a general rule, messages are
delivered asynchronously because that is one of the key concepts/advantages of messaging
systems. Synchronous messaging is provided for applications that require Remote Procedure
Call (RPC)-like functionality using Messages.

The UCMS Framework provides a level of abstraction on top of MOM implementations, with a
common API across different vendors while at the same time shielding the applications from any
changes to the vendor implementations.

There is a single configuration file for the messaging application, which helps organize and define
the configuration in one place instead of having it scattered across the entire application.
Because the configuration is neatly organized in one place it is easier to check for inconsistencies
instead of having to browse through many lines of code searching for different configuration
options. This reduces solution complexity and maintenance costs.

Client E Server
Physical Queue

M BN

_}]

MNetwork

EN) sm SRR

W“““r — 3 N h
MQSeries E MQSeries
Onyx i onyx
JMS ! JMS

Figure 4.2-29: Messaging Framework Support

The messaging support is designed to be used in conjunction with a Message Oriented
Middleware (MOM) provider. It currently supports JMS and MQSeries. It can be used as the
“client” or the “server” or both. This enables use as a client of an existing MQSeries server

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 80
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

application, or the server for an existing JMS application or be placed both in the client and server
positions.

All the details of getting a connection, or a queue manager, or a session, are dealt with internally
by the UCMS Framework, which is the plumbing of the messaging system, allowing developers to
focus on solving the business needs of the application.

Point-to-Point Processing

P2P is usually implemented using queues. They represent a communication link (either
synchronous or asynchronous) between two “points” on the network.

A Request is sent by placing a message in a queue, and a response is received in a reply queue.
To achieve this functionality the UCMS Framework provides two classes: OnyxRequester and
OnyxReplier, as the names imply the OnyxRequester plays the part of the requester while the
OnyxReplier plays the part of the replier.

Publish and Subscribe Processing

A publish and subscribe scenario is one where a client can subscribe to one or more topics.
Every message posted to a topic is delivered to all subscribers to that topic. This is a loosely
coupled implementation where the publisher has no knowledge of its subscribers. To achieve
this functionality the framework provides two classes: OnyxConsumer and OnyxProducer.

4.2.9 Security

4.2.9.1 Introduction

Security is the ability for an application or application component to ensure that the user of the
application is a known entity who has been authenticated, and that the user is authorized to
perform the action. Authentication is the task of verifying that the user is who he says he is.
Authorization is validating permission to perform a given action. The action may be to update a
record, display information, or simply to navigate to another screen. In addition to authenticating
and authorizing a user, audit information about who was authenticated, when, and what
authorization requests were made, need to be captured.

The role of a security component is to provide a security framework for user authentication,
authorization for fined grained access control, and to provide auditing when security requests are
performed. For UCMS, the security component complements the security enforcement provided
by SiteMinder at the Portal and Application Server levels. The security component provides a
service interface for the application to interact with security services. The interface
implementation is made as a configuration option. The primary benefit to this approach is the
application is not bound to a specific vendor implementation of security.

The first section describes the Security Service. This is followed by an introduction to the UCMS
Framework implementation of this service, and then a discussion on the SiteMinder Adapter
needed to authenticate and authorize users.

4.2.9.2 Security Service

The Security Service is a generic layer that encapsulates how an application implements security
functions such as authentication, authorization and security auditing. It provides a common
interface for application components to verify that a user’s credentials are valid and that the user
is entitled to perform the requested action. This separation of concerns is achieved through the
SecurityService interface, allowing the business applications to be coded using the interface,
without regard to the implementation of this interface.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 81
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

«COMPonerts:
= |SecurityService
£ SecurityService
@ authenticate ()
@ recordSecurityEvent ()
@ createCredential ()
@ isAuthorized [)
@ recordsecurityEvent
- l!lll l: :I -:-:|:|ﬂ:e|'5:-:-
«Java Interfaces
£ SecwityService
@ authenticate ()
@ recordSecurityEvent [)
@ createCredential ()
@ isAuthorized ()
@ recordSecurityEvent [)
S
“LIgE
«lava Interfaces «lava Interfaces
€ SecwityCredential £ Secwity Token
@ setCredentials {) @ getlD ()
@ compare ()

Figure 4.2-30: Security Service

The Security Service Component provides one primary interface and two secondary interfaces.
The primary interface is the SecurityService. This interface supports the primary security
functions of authenticating, authorizing and auditing. To accomplish this it uses the two
secondary interfaces: SecurityCredential and SecurityToken.

The SecurityService interface provides methods needed to create a SecurityCredential with user
supplied credential information. The type of information used to create the credential is
determined by the application and must be of a type that the particular security implementation
supports. Implementations include User Id & Password, Security Assertion Markup Language
(SAML) Credentials, Digital Certificates, etc. UCMS applications pass HTTP Session Headers as
the user supplied credential information. This enables the SiteMinder Adapter to retrieve and
interpret SiteMinder-specific headers to authenticate and authorize a user.

Once a SecurityCredential is created, it can be used to authenticate the user. The authenticate
method takes a SecurityCredential as its input and returns a SecurityToken. This token may
contain the SecurityCredential itself; or it may contain a SecurityPrinciple or other security related
information. The contents of this token are unknown to the application; the application simply
needs to pass the SecurityToken back to the SecurityService when checking if a user is
authorized for a particular context/action.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 82
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

i iActorl) SecurityService

Assemble Credential Info SecurityService Implementation
retrievec from
ComponentConfigurationContext

1: createCrecential { credentiallnfo @ Ohject) @ SecurityCredential
“rreates
1.1 ‘;CalleclOperatio&.

areturm» SecurityCrecential

2: createCreclential

3 authenticate [crecential | SecurityCredential) @ SecurityTolen
wrregten
2.1: \CalledOperation),

PO 9 SecurityTolen

4 authenticate

5: isAuthorized (user : SecurityTolen, contextData : Object) @ boolean

contextData represents the
resourcefaction the user is
trying to access/perform.

areturms
6: isAuthorized

Figure 4.2-31: Authenticate and Authorize

This diagram describes the interactions an actor (business application program) has with the
SecurityService to authenticate and authorize a user for a particular action. Notably the actor
does not know or need to know what the specific security product implementation is to perform
the interaction.

4.2.9.3 Framework Security Support

The UCMS Framework provides a default implementation of the SecurityService interface. This
default implementation enables product specific adapters to be written following a standard
template. The SecurityService interface was designed with the user of the interface as the main
focus. This default implementation was designed with the product-specific adapter as its main
focus.

An interface is available for an AuthenticationManager and for an AuthorizationManager. The
reason for this separation is to allow two different product implementations for the main services
of authenticating and authorizing a user. The UCMS Framework also provides default
implementations to create and log events using the SecurityEvent and AuditManager classes.
Additional specific interfaces and helper classes are provided to manage principles, roles,
resources, and the permission search strategy.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

83

«lava Class»
(& secunityService_Impl
o authenticationManager : AuthenticationManager
o authorizationManager © AuthorizationManager
o guditManager | AuditManager
o securityEventImpl @ SecurityEvent
@ getAuthenticationManager ()

«Java Interface» @ setAuthenticationManager () v
) SecuwityService @ getAuthorizationManager () g%‘:&:}?g;ﬁ;
® authenticate () @ setAuthorizationManager () ¥
_ - @ getAuditManager -
@ recordSecurityEvent () ® I:et au rIitManauljJer (()) ® createCBE ()
@ createCredential () {_} startL||-1 0) -

@ isAuthorized {) sLIgEs

@ shutdown
@ recorcSecurityEvent () ()

@ createCredential () o T

® authenticate () @ SecurityEvent_Impl
@ recordSecurityEvent ()

@ isAuthorized ()

@ recordsecurityEvent ()

@ getExceptionHandlerService ()

@ setExceptionHanclerService ()

@ getLogContext ()

@ setlogContext ()

wwton wligen “LISE
«Java Interfaces «lava Interfaces «Java Interfaces
O AuthenticationManager O AuthovizationManager 0 AuditManager
@ findPermissionHolder |) @ getPermission () @ recordSecurityBvent ()
@ getPrincipal () e @ init ()
@ getlser () @ setAuthenticationManager ()
@ init () e @ isAuthorized () «Java Class»
@ setAuthorizationManager () @ AuditManager_Impl
@ malesSanitizedRequest ()
@ setlser () @ getLogContext ()
@ authenticate () @ setlogContext [)
@ createCredential () @ recordSecurityBvent |)

Figure 4.2-32: Default SecurityService Implementation

The above diagram highlights the default SecurityService implementation showing the use of
AuthenticationManager and AuthorizationManager interfaces. These interfaces are implemented
as a product specific adapter to the default implementation. UCMS uses CA SiteMinder as the
core access control management product, so an adapter for this product is used to integrate with
the SecurityServices component.

4.2.9.4 SiteMinder Adapter

The SiteMinder Adapter provides a facade to the details of the SiteMinder Java Agent API or the
SiteMinder Application Server Agent. The adapter enables the application and more specifically
the SecurityService being used by the application to communicate with the Policy Server either
directly using the Java Agent API or indirectly using the Application Server Agent. The Policy
Server is a general-purpose policy engine with no specific knowledge of resources. The role of
the adapter is to provide the specific knowledge of resources and to act as the gatekeeper to
protect those resources from unauthorized users. This role is done in conjunction with the
SecurityService Component.

Single Sign-On is utilized for UCMS applications, so the SiteMinder Adapter is typically not
authenticating a new user but instead validating user credentials and then authorizing the user for
a specific resource/action. SiteMinder uses an encrypted token stored as a session cookie and
placed in the HTTP Session to enable custom SiteMinder Agents, like this adapter, to participate
in the Single Sign-On environment.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 84
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.3 Portal Services

43.1

Introduction

% Developer
y,

Portal
Administrator

Web Server

%

Portal

Community
Manager

Portal Services

Portal
DevTools
Admin
Server
Portal
Portal
Search

Group Sync

voli Enterprise)

Tivoli Data
Warehouse

&

/

Browser
Client

1IS Web /

Server

SiteMinder’
Agent

Java Client

Mobile
1 sync
Audit Db,

A capture

Low-Volume
Scan Station

(‘Tdentity
(o} .
Server L
‘w kil ‘

—

corticon |/

semerj—z—\
Rule Set ‘ (s

Reporting Services

; \
: Reports |

BO Ent
DB

(‘Business- | _
Objects }_.)

Enterprise

Local Data Services.

p N
| oracte |
\)

Reporting
Database

(Livecycle)

) — D
{ Designer]

< Form) LiveCycle

Document Services

Content

(Oracte)

FileNet Tmage
DB Files

Figure 4.3-1: Portal Services Context

A single point of access is provided to allow UCMS users to access diverse information and to
perform disparate UC business functions based on their roles. Also, a tool is required to
standardize the user interface as well as the management and delivery of services. This is where
a portal comes into the picture.

The DLI Portal provides a single sign-on to a variety of content, directories, and information
services related to a specific topic or organization providing a common customizable user
interface irrespective of the back-end systems for all applications across the organization.

The following sections describe the components and key features of the UCMS Portal
architecture.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016

Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

85

4.3.2 Component Overview

Portal
Administrator

Community
Manager

] Portal ,
Search J\
\‘ Group SyncJ

Identity
Service

I Active
| Directory

Figure 4.3-2: Portal Services Components

4.3.2.1 Run-Time

The following are the run-time components for the portal:

Portal Repo: Stores portal objects, such as user and group configurations, document records
such as PDF files, and administrative objects. The portal database does not store the
documents available through the portal. Source documents are left in their original locations
which may include the Portal Document Repository. In the AEM implementation, the Portal
Repo is a JCR (Content Repository API for Java) compliant object repository. More details
can be found in the AEM portal documentation.

Adobe Experience Manager (AEM) Portal Server: Serves end user portal pages and
content. The Portal enables end users to access portal content via My Pages, community
pages, the Knowledge Directory, and Search. The Portal also enables administrative actions,
such as setting preferences on portlets (which may be local or remote) or managing
communities and portal setup.

Search Server: Returns indexed content stored within the portal. The Search Service returns
content that is indexed in the AEM system from the Portal Publisher. Content that is indexed
in AEM includes documents, portlets, communities, and users as well as many other portal
objects. This server does not search custom application content, e.g., Worker Search
functionality is not provided by this component.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 86
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Group Sync: When a user accesses the portal, the Group Sync component synchronizes the
user groups and authorizations with the MS Active Directory.

Development Tools: Tool to create portlets like calendars, surveys, polls and telephone lists
with no code and in a short time. This is not currently used for UCMS.

The following figure depicts the interaction between portal components and other entities when a
user attempts to log into the portal.

Interaction
¢ Portil Usse:Por e, | wtamnde Pol S portatPoctal porta DS Por 2| Appdcation Senvcee: Portl
1 Portal Logn
2: Cradantiols Qhardags
3t Ut Proatdes Crechitiok
10 U Credenitial vibdation
111 Portad Authoration

1.3.1.1: sk Valdation

&; Prowcke Roks Authoegation

5 Regp st Partiets

7: Dsplay Portiat

Figure 4.3-3: Sequence Flow for the Portal obtaining a login page

Steps in Logging into the Portal to View Portlets:

1.

2
3
4,
5

User attempts to access a page that is secured.

SiteMinder provides a challenge page where the user must enter their credentials.
User provides credentials.

SiteMinder authenticates user and authorizes user to access the portal.

Portal Server validates user is a valid portal user and retrieves users role from portal
database, which includes format of user’s landing page.

Based on user’s role, Portal Server requests the appropriate portlets from the server(s)
hosting the portlets.

4.3.2.2 Design-Time

The Portal Server also provides a user interface for designing and placing content or portlets on
various pages and in communities. Tabs at the top of a page help users perform their functions
effectively. The tabs provide additional functionality depending on pre-defined role based access.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 87
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Tier Two Pages: Displays a user-personalized view of the portal. Administrators can
customize the Tier Two Pages by utilizing the Administration Pages (below) and add portlets
which they think are more important to the users’ daily tasks.

e Tier One Pages: While Tier Two Pages offer users a personalized view of the portal,
communities offer a view of the portal that is shared by many users with a common interest
(ex: UCMS Community, DLI Community). An Administrator can create a community and
populate it with portlets to display content relevant to the community or that enables members
of the community to work together. Under each community there can be multiple pages like
Tax Data, Employer Registration etc. Under each page multiple portlets are available
depending on the Users Role.

e Administration Page: The Administration tab is used by the portal administrator to perform
the portal administrative tasks. The Administration area provides access to the administrative
object directory, which stores portal objects (such as communities, portlets, and users), and
access to portal utilities (such as server configuration utilities). Depending on the permissions
granted to portal administrators, they may see different menu items in the Administration
area.

4.3.2.3 Administration and Monitoring

The following are the key tools or utilities available for administration and monitoring of the portal
through the Admin Server. These tools/utilities, which are available via the Portal Administrative
User Interface, include:

e Activity Manager: Used to create, modify, or delete activities, and define which User
Role(s) have what rights within the portal, e.g., Can Create Communities

e Approve Objects for Migration: Approve migration packages, e.g. the administrator reviews
and approves Migration Packages before moving portlets from Dev to Test

e Audit Manager: Audits user activity or object activity

¢ Automation Service: Configures and runs jobs such as the job to synchronize Active
Directory domains for UCMS

o Default Profiles: Configure default user profiles.
e Global ACL Sync Map: Configure the global access control list (ACL) synchronization map

e Migration — Export: Create a portal export package, to migrate objects like Communities or
Portlets from the Development Portal to Test Portal

e Migration — Import: Import an exported portal package
e Portal Settings: Modify Portal URL settings
e System Health Monitor: View diagnostic information

e User Profile Manager: Modifies the user profiles map

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 88
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.3.3 Key Concepts, Features and Capabilities

4.3.3.1 Security and Services Integration

This section focuses on security and Web services integration, which include topics like
authentication, authorization, and rights delegation specific to the portal.

SiteMinder Authentication & Authorization:

The authentication of users through the web portal and SiteMinder serves to only determine the
user’s identity and validate their access to the portal application. This is referred to as “coarse-
grained” authorization because it only identifies the users and does not determine which functions
within the portal can be accessed.

The system uses SiteMinder to perform authorization by intercepting user requests to the portal,
challenging the user for credentials, and validating the credentials against the SiteMinder Policy
Server to verify that the user has access to the portal.

Portal Authorization:

Portlet authorization happens at the portal level. Once SiteMinder authenticates a user to the
portal, the Portal takes control and checks its own database to make sure the user is
synchronized in the portal registry. It then provides the user with a landing page and portlets
based upon the user's role.

All users and groups are created in Active Directory (AD) only, and are synchronized to the Portal
on a periodic basis. The roles, which consist of various AD Groups, are used in determining
access to portlets.

Portlet Authorization:

The user's portlet-specific authorization decisions are controlled by WebSphere Application
Server (WAS). The user's identity is asserted to WebSphere by passing the authenticated
userID from the portal back to WebSphere via a session token inserted by SiteMinder.

4.3.3.2 JSR 168 Portlets

All UCMS portlets follow Java Specification Request (JSR) 168. JSR 168 is a specification that
establishes a standard API for creating portlets. JSR 168 provides interoperability between
portlets, Java-based portal servers, and other Web applications. More details about this JSR
can be found at http://jcp.org/en/jsr/detail?id=168. By conforming to the JSR 168 specification,
portlets lose some functionality available to portlets that are not JSR 168 compliant such as inline
refresh and inter-portlet communication (which may, however, be available via a portal server
API). However, the portability of JSR 168 portlets far outweighs the additional functionality
available when using the vendor portlet API.

Portlet standards have evolved since UCMS was initially designed. New designs today would be
likely to use the newer JSR-286 portlet specification. However, for an existing application like
UCMS, there is little to be gained by converting to JSR-286 portlet format, and since considerable
effort would be required to convert the approximately 200 current portlets to the new format, the
effort would not provide substantial benefits.

AEM currently supports the JSR 168 specification as well as JSR-268 portlets. UCMS was not
updated to JSR-268 during the migration to AEM.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 89
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

http://jcp.org/en/jsr/detail?id=168

4.4 Workflow

4.4.1 Introduction

Portal Services

Document Services

- peskiop

Low-Volume
Scan Station

Content
Collector

Content
—| Engine |

Oracle |

" | FileNet Tmage
DB Files

Srstoms Waragomen |

Reporing sornces |

Warehouse

Tivoli Data

Local Data Services

\ oLTP

(orate)

/| patabase |\

Reporting

Admin
Console

Application
Rational Developer
RSA/
RAD
[Workilow Services |
s

Websphere [Business
BPM Flow

Human
Task,

State
Machine | Service
=)

Integration
Developer

WPS
WebSphere
Administrator (\ebsphere Busnr':ess
R /| Integration Modeler
Q| peveloper
S

Business
Analyst

Figure 4.4-1: Workflow Services Context

UCMS workflow is founded on three key concepts:

1. Implementation of workflow as an integral part of the service-oriented architecture — To
leverage the power and promise of SOA, it is critical to bring business processes and
componentized functions together in a compatible and flexible manner.

2. Use of an open-standards approach for modeling business processes — That is, uses the
open, industry-standard Business Process Execution Language for Web Services (now
referred to as WS-BPEL or simply BPEL). This provides the needed integration into the SOA
and makes the process model portable to any process execution environment supporting the

BPEL standard.

3. Reduction of technical knowledge required for designing and deploying processes — The
objective is to allow business analysts to model processes and to allow IT staff to test and
deploy them into the operational environment with relatively minimal programming skills.

Workflow Services are built on a set of complementary products designed to meet each of these
objectives. The following sections describe the components and key features of the UCMS

Workflow architecture.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

90

4.4.2 Component Overview

E,
&
Application
Developer

Rational
RSA/
RAD

Workflow Services ‘

WAS

Rule Set

WebSphere Business

BPM Flow
State

Machine

Service

Service
Component

Admin
Console

WPS
I WebSphere
Administrator 3
IBM' Business <|
Integration Modeler

A Designer
&
Integration BAL\JSITeStS
Developer nalys

Figure 4.4-2: Workflow Services Components

4.4.3 Run-Time

UCMS utilizes IBM Business Process Manager (BPM) for its workflow runtime engine and IBM
Integration Designer (IID) as BPM’s integrated development environment (IDE).

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.4.3.1 WebSphere Business Process Modeler (BPM)

: Business 3
Service Business State Business
Components [TR Miankiana Rules
Supporting Interface Business ; .
Siritaas Maps Object Maps Relationships Selectors
SOA Core Service Component Business Common Event
Architecture Objects Infrastructure
WebSphere Application N

Figure 4.4-3: WebSphere Business Process Manager Architecture

WebSphere Business Process Manager (BPM) has a three layer architecture:

e Service Components

Business processes — The business process component in BPM implements a Web
Services Business Process Execution Language (WS-BPEL) compliant process engine.

Human Tasks — Human Tasks are standalone components in BPM, and can be used to
assign work to employees or to invoke any other service. Additionally, the Human Task
Manager supports the ad hoc creation and tracking of tasks to ensure that tasks are
completed. WebSphere Process Server also supports multi-level escalation for human
tasks including e-mail notification and priority aging.

Business State Machines — Business State Machines provide modeling of processes
based on states and events, which sometimes are easier to model than a graph-oriented
business process model. One example is an ordering process where the order can be
modified or canceled at any time during the order process until the order is actually
fulfilled.

Business Rules — Business Rules are a means of implementing and enforcing business
policy through externalization of business function. This enables dynamic changes of a
business process for a more responsive businesses environment. UCMS utilizes Corticon
as a separate business rules engine to construct and use the business rules.

e Supporting Services

Interface maps — It is possible for interfaces of existing components to match
semantically but not syntactically (for example, updateCustomer (Name, Address) versus
updateCustomerInDB2 (Address, Name)). This is especially true for components that
already exist and services that need to be accessed. Interface maps enable invocation of
these components by translating their names and calling interfaces such as the sequence
of parameters used, or in the example above, translating the actual name of the routine
to be called (the two variants of “updateCustomer”) as well as the sequence of the
associated parameters.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 92
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

- Business Object maps — Business Object maps are used to translate one type of
Business Object into another type of Business Object (see below for details on Business
Objects).

- Relationships — Relationship service is used to establish relationship instances between
objects in disparate backend systems. These relationships are typically accessed from a
Business Object map when translating one Business Object format into another.

- Selector — A selector component is used for dynamic selection and invocation of different
services, which all share the same interface. For example a customer support process
could use different human task implementations during holidays than during regular
working days.

e SOA Core

— Service Component Architecture — Service components represent the functional
components required for composite applications.

— Business Objects — Business Objects that are part of the SOA core provide uniform
invocation and data-representation programming models.

— Common Event Infrastructure — The Common Event Infrastructure is used by UCMS to
generate events for the monitoring and management of applications running on
WebSphere Business Process Manager.

4.4.3.2 Design-Time Tools

The UCMS project uses the Eclipse-based WebSphere Business Modeler and WebSphere
Integration Developer (WID) as tools for the development and rapid assembly of business
solutions that allow for the description of all styles of processes with one programming model
based on Business Process Execution Language (BPEL). The tools are used to:

e Describe all processes using visual editors for component development, assembly, integrated
testing, and deployment

¢ Integration including human tasks, role-based task assignments, and multilevel escalation
processes, as well as visual editors for component assembly

e Change business processes on the fly with relatively minimal skills

e Update hard-wired business rules, business state machines, and selectors to dynamically
choose interface based on business scenarios (note: interpreted business rules are
implemented using the Corticon rules engine

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 93
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Process

Requirements
M

BPELAWS
i B
/

Process Composition Services WebSphere Integration

Developer
Choreograph m
Workflow M MM
it (Ao f]

| BPEL4WS
58
-

Process Management

WebSphere Business
Modeler

» ;}\, WebSphere

Business Process
—[:AW!E Manager
E Loan Officer

Figure 4.4-4: Business Process Development

Manage
Execution Create Application

A&

4.4.3.2.1 WebSphere Business Modeler

WebSphere Business Modeler (WBM) enables the creation of realistic business process models
that facilitate the understanding of the current business and plan for its future to-be processes.
WBM is used to model, simulate, and measure business processes, and collaborations with team
members. WBM is used for Process Modeling, business item modeling, resource modeling,
organization modeling, structure modeling, process analysis, simulation and reporting purpose.

WebSphere Business Modeler can be used to model the business process to achieve many
goals such as documenting existing processes, determining requirements for staff, systems, and
facilities, planning changes to existing processes and systems, testing and analyzing existing and
proposed processes The resulting models, along with output from the integration developer
(below), are converted to BPEL for use in the process server.

4.4.3.2.2 IBM Integration Designer

IBM Integration Designer (lID) is a complete development environment for building integrated
applications. To simplify and accelerate the development of integrated applications, IID provides
a layer of abstraction that separates the visually-presented components with from the underlying
implementation.

IBM Integration Designer is used in UCMS to develop process choreography services using
BPEL and WSDL, configure Human Task-Manager tasks, automate business processes and
assemble the UCMS solution. Typically, the business processes modeled in WebSphere
Business Modeler are imported to 11D as a starting point, and are then used to configure and
assemble the services in the IID assembly editor.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 94
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.4.3.3 Administrative and Monitoring

Administering BPM involves preparing, monitoring, and modifying the environment into which
applications and resources are deployed, as well as working with the applications and resources
themselves.

BPM offers several interfaces for administering the runtime environment. The sections below
outline the different administrative and monitoring tools provided with BPM.

4.4.3.3.1 Administrative Console

The administrative console is a browser-based interface where an administrator can monitor,
update, stop, and start a wide variety of applications, services, and resources for the applications
running on BPM. The administrative console can also be used to work with relationships and to
locate and resolve failed BPM events and processes.

The administrative console also provides administration capabilities for WebSphere Application
Server and other customer-defined products.

4.4.3.3.2 Business Process Choreographer Explorer

Business Process Choreographer Explorer is a stand-alone Web application that provides a basic
set of administration functions for managing business process and human tasks. Information
about process templates, process instances, task instances, and associated objects can be
viewed. These objects can also be acted on; for example, new process instances can be started
or repaired, failed activities can be restarted, work items managed, etc.

4.4.3.3.3 Other Monitoring Methods

WebSphere BPM provides other non-visual methods of monitoring:

e Scripting — The WebSphere administrative (wsadmin) program is a non-graphical command
interpreter environment for running administrative options in a scripting language and
submitting scripted programs for execution. It supports the same tasks as the administrative
console. The wsadmin tool is intended for production environments and unattended
operations.

e Command-line Tools — Command-line tools are simple programs that can run from an
operating system command-line prompt to perform specific tasks. Using these tools,
administrators can start and stop application servers, check server status, add or remove
nodes, and other tasks. The BPM command-line tools include the serviceDeploy command,
which processes .jar, .ear, .war and .rar files exported from a WebSphere Integration
Developer environment, and prepares them for installation to the production server(s).

e Administrative programs — A set of Java classes and methods that utilize the Java
Management Extensions (JMX) specification provide support for administering Service
Component Architecture (SCA) and business objects. Each programming interface includes a
description of its purpose, an example that demonstrates how to use the interface or class,
and references to the individual method descriptions.

While monitoring of events occurs using the tools that are available with BPM, critical alerts are
forwarded to Tivoli Omnibus for review and possible follow-up, e.g., creation of a DLI ServiceNow
Ticket. Please refer to Section 8.0, Systems Management Architecture, for more information.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 95
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.4.4 Key Concepts, Features and Capabilities

4.4.4.1 Business Process Choreography

In daily UC activities, employees repeatedly perform sequences of activities to achieve an
objective. These well-defined and repeatable patterns of activities, also known as workflow, can
be modeled as processes, and are built up from automated and non-automated tasks. BPEL
orchestration can utilize both types of tasks to formulate activities.

The process descriptions in this document are generic, and intended to highlight the architectural
connections. As noted in an earlier section, the details of business processes are contained in
Use Case and supporting documentation associated with the thirteen functional areas of UCMS,
known as functional modules. For details of specific business processes, refer to those materials.

A business process is a set of business-related activities that are invoked in a specific sequence
to achieve a business goal. The business process defines the sequence of the flow, how external
events are to be handled, human interaction requirements, and conditional processing. A
business process-based application consists of both the business process and the applications it
invokes. Using the appropriate tools, these processes can be automated, as they are in UCMS.
The business processes execute in a process engine, Business Process Manager (BPM), and
access business applications running on application servers. This effectively separates the
business flow logic from the implementation of each individual function.

A fully realized service-oriented architecture allows the overall business solution to be
constructed by choreographing multiple services as opposed to individual pieces of application
code. The following diagram illustrates where business processes and process choreography fit
into the UCMS’ service- oriented architecture layering.

i Employer PA DLI External 7 3
End-user somac. AVDES Employees Agency o
@ | Systems and '\ AInterface User Systems % =
2 | Applications '\\ 54 interface Q 8
A\ (]
8 Register 4] % OZ o 5
(smployor 3 |3
rocess S=0 - 8, o
I8 T 5.lg
& 2 l@o %
< | S (55| 3
] 8 |3 g e
% . e Collect o | g ;g
g r":» Eregpone E:l’nmon ‘bdomlm Ddonnlno 3 § s
@ 3 g
B ¥ by
a | !
k%ﬁ
B (& aree S
tepmt T corpaste 2
Regry
Figure 4.4-5: UCMS Service-Oriented Architecture layers
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 926

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The Business Process layer is broken down into two types of processes: Microflows and
Macroflows.

Microflows are business processes that are short running, non-interruptible processes which
execute as a single business transaction. A task being automatically routed from one employee
to another due to workloads is an example of a microflow. By their nature, microflows cannot
contain any human activities since they would cause the process to stop until a human performs
the necessary activities (which could interrupt the flow, thus violating a basic premise of a
microflow). Macroflows, on the other hand, are long running, interruptible business processes
that can include activities which may require human interaction or a response from a remote
service. Macroflows can wait for hours, days, or even years until the expected event occurs. For
example, all business processes dealing with physical actions, such as scanning and printing of
documents, are modeled and executed as macroflows. Macroflows can consist of multiple
transactions, potentially a transaction for each individual activity.

4.4.4.2 Human Task Manager

As stated previously, Human Tasks are standalone components in BPM that can be used to
assign work to employees or to invoke any other service. The Human Task Manager supports the
ad hoc creation and tracking of tasks. Also supported is the multi-level escalation for human tasks
including e-mail notification and priority aging. An important aspect of human tasks is that they
can be suspended while the human worker gathers information or performs other non-automated
tasks. As aresult, these BPEL processes may require regular review to verify that they are being
completed in a timely manner and not deferred indefinitely. Long suspensions can hinder
infrastructure migration (such as upgrades). Even when that does not occur, lengthy suspension
can result in other operational issues, and thus regular review is an essential part of process
governance.

In general, there are three different types of tasks:

e Participating Task: Executes the machine-to-human (M2H) scenario. This means that a
service invokes a human, asking them to perform particular tasks or provide certain data
before the process ends. The figure below, which is a scenario for verifying the wage record
data for correctness, illustrates a Participating Task.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 97
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e e e g e

gd Partizipating Human Taek Scenario disgrsm/

E Q «Participating Verify Wage Record Human Tashs «Paticipating Verify Wage Record Human Tashs
Fas Fas :TaskiServicelnterface :T askF articip antinterface
‘System Uzer

«BusineszProcesse «Humans
'

imvoke(WageRecord)

H - |
T Laall]
- E return E
= v .
H H quenttaziName) -
I . -
| E return task list
; [r= :
! ' T
, claimAndCompletettaskid, tadiMeszage) - |
! . =
: - return to buziness process
1 :

=
'
'
'
'
'
'
'
'
'
'

Figure 4.4-6: Participating Human Task Scenario Sequence Diagram

e Originating Task: Executes the human-to-machine (H2M) scenario. This means, a human
invokes a (computer) service. This scenario is similar to Participating but it is initiated by a
human rather than a Machine.

e Pure Human Task: Executes the human-to-human (H2H) scenario. This means that a
human task is created by a human for a human. The sequence diagram below, which is a
similar scenario to the one above, illustrates a Human-To-Human task. This scenario exists
when one user wants to re-assign or delegate the human task to another user.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 98
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

gd Furely Human Taek Scenario diagram

32 EE wPurely Human Task for Werifying Wage Records wFurely Human Task for Verifying Wage Records
A FaY :TaskOriginatorinterface :TaskP articip antintarface
Usert User2

wHumans «Humans i i
' '
1 1 B
'

E cre atel T azh)

 §

1 |
E <<retumss .
, o : | i
1 ! 1 [
| v starkTas) - 1
) Lt |
' 1
! . Vo admetumss '
- T :
T i T i
! H H ' qurnitaskName) - |
H ' L
| : :
| ! L v aareturn Task List=>
- ; 7 ! i
! claimAndCompletetaskld, taskhlessage) '
! : : o
1 . '
' - | Zereturns*
, : o |
1 ' [1
| H notity H .
: ' H
1

Figure 4.4-7: Purely Human-to-Human task Scenario Sequence Diagram

An additional task type is provided to extend the scenario between a human task and a business
process:

e Administrative Task: Executes administrative tasks, such as suspend or terminate, in
business processes.

There are two ways to implement the relationship between human tasks and business processes:

e Stand-alone task — A stand-alone task is a Service Component Architecture (SCA)
component with human task implementation. An SCA component is a universal model for
“business services” with an interface and an implementation (e.g. Java, BPEL, human task).
The interface is defined by a Java interface or Web Service Description Language (WSDL)
port type, depending on its implementation. For example, a human task implementation
always has a WSDL port type as interface, despite the “web service” term.

e Inline task — An inline task is defined in the BPEL process implementation. It can be
implemented as a staff activity modeled on the business process level, and as task(s) on
various activities (invoke, pick, receive, event handler, on message).

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 99
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The following table summarizes which task types can be inline or stand-alone:

Task kind Inline task Stand-alone task

Task types Participating Participating
Originating Originating
Administrative Pure Human

4.4.4.3 Integration

Business Processes and Human Tasks can be invoked by external clients as SCA components
and the business process itself can invoke another business process as an SCA component. A
business process resolves external services through partner links. The Business Object
component of the SOA Core provides a standard data format for messages. The entire SCA
component can be exported as a web service with a standard WSDL interface that can be
invoked by external clients such as webMethods. Just like any other SCA Component, BPEL
processes make use of the SCA Import, Export and Standalone Reference construct in order to
facilitate interaction with external Components.

Implementation
R Java

I Export \

. Implementation
Business Process

Standalone R [import

Reference

Figure 4.4-8: Business Process Enterprise Integration

In the diagram above, the “[R]” indicator represents a requirement that a component has on an
interface to be provided by another component. The “(1)” indicator represents an addressable
interface provided by the component. The lines that interconnect the components are
implemented using messages, queues, or other mechanisms as appropriate for the component.
The diagram shows an “Export” WSDL interface providing an addressable interface as an
EntryPoint for external clients to invoke the SCA component generically referred to here as
“Service Component”, implemented as a Business Process. This “Service Component” could be
a process choreography or a Human Task Manager. The “Standalone Reference” component
has a requirement for the interface provided by the “Service Component”. The “Import” WSDL
interface represents an addressable interface provided as an ExternalService enabling an SCA
component to consume a remote service. The “Service Component” has a requirement for the
interface provided by this external “Import” component. The “Service Component” also has a
requirement for the addressable interface provided by another “Service Component” implemented
in Java.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 100
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.4.4.4 Security

The security of data and processes is critical. WebSphere Process Server security leverages the
WebSphere Application Server security. Refer to the Security section for detailed information
about security and WebSphere Application Server.

4.4.45 Scalability

BPM in a Network Deployment cell adds support for clustering which is needed for solution
scalability as well as solution robustness and failover recovery. It also inherits the benefits of cell
topology that enable scalability and high availability, one central point of administration for all the
servers in the entire cell.

4.5 Enterprise Service Bus

45.1 Introduction

Integration
Server

'ﬁ\ Capture.
Desklop

Low-Volume
Scan Station

Manager
My Server
WebMethods
S 4
- l

WM Administrator

Figure 4.5-1: Enterprise Service Bus Context

The webMethods Integration Platform enables the exchange of data and logic by serving as an
enterprise-wide integration backbone referred to as an Enterprise Service Bus (ESB). Resources
are integrated and connected to the ESB backbone instead of directly to each other, which can
reduce the amount of effort needed to construct new processes.

Component-to-component inter-connections using mechanisms such as API calls, message
brokers, or file transfers/exchanges, can also be used in parallel with the ESB backbone. Since
ESB and component-to-component interactions are possible and there is an increasing emphasis
on the use of service orientation going forward, the remainder of this section describes ESB-

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 101
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

enabled services as a guide to potential future UCMS enhancements. The UCMS webMethods
implementation details can be found in the individual technical design documents. Not all
interacting partners may be in a position to use web services to perform tasks such as submitting
employer/employee quarterly data. While a fully service-oriented external solution for UCMS is
desirable the solution must support the needs of DLI and external users.

The webMethods Integration Platform includes an ESB to provide the infrastructure and
connective logic to enable diverse resources to operate in a cohesive and unified manner. The
ESB can be used to transport information among resources, dispatch documents according to
established business rules, and invoke processes on target systems. The ESB hosts integration
logic, performs data transformation, and supports both synchronous (RPC and request/reply) and
asynchronous (messaging) modes of interaction among resources. The ESB can be used to
supplement or replace existing UCMS component interconnection mechanisms as needed.

webMethods plays a vital role by integrating these enterprise systems/resources and establishing
a communication channel between external and internal systems. As shown in the diagram above
webMethods is integrated with WebSphere Business Process Manager Work Flows, FileNet
EDMS, J2EE, Oracle RDBMS, and external business partners via HTTP/S, FTP and SMTP.

The following sections describe the components and key features of the UCMS Enterprise
Service Bus.

4.5.2 Component Overview

Enterprise Service Bus |

JDBC
Adapter

Documents

Integration
Server

Reqistry
Weh Service
Descriptions

My
WehMethods
Server

WM Administrator

Figure 4.5-2: Enterprise Service Bus Components

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 102
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

45.2.1 Run-Time

This section describes the webMethods run-time components.

45.2.1.1 Integration Server

webMethods Integration Server is the central run-time component and the primary engine for the
execution of integration logic. It is the main entry point for the systems and applications that can
be integrated. It also connects internal and external resources to the integration backbone.

45.2.1.2 Broker

webMethods Broker is a high-speed message router. It is the primary component of what is
generally referred to as the “message backbone” or “message facility.” Along with supporting
features provided by the other components, webMethods Broker facilitates asynchronous,
message-based solutions using the publish-and-subscribe model. The role of a Broker is to route
documents between information producers (publishers) and information consumers (subscribers).

4.5.2.1.3 Adapters

An adapter exposes the data and business logic associated with a particular back-end resource
to the Integration Server. An adapter incorporates a resource into an integration solution without
having to build complex custom code or understand the low-level details of the resource or its
transport protocol(s). The adapter handles the low-level work of connecting to the resource,
managing communications, encoding and decoding data, and invoking processes. Adapters can
also perform protocol translation if necessary. UCMS uses JDBC and MQ adapters..

4.5.2.2 Design-Time

webMethods provides tools for developing and testing integration solutions.

Designer is the graphical development tool that is used to build, edit, and test integration logic. It
provides an integrated development environment in which to develop the logic and supporting
elements that carry out the work of an integration solution like UCMS. It also provides tools for
testing and debugging the solutions that are created.

4.5.2.3 Administration and Monitoring

Administration and monitoring components are installed, configured, and used by DLI and/or OIT
personnel. The tools include myWebMethods (a Web-based, administration and monitoring user
interface for managing webMethods components), and other tools. UCMS uses the monitoring
tools to view status information about the process, services, and documents to perform tasks.
The tools have user interfaces, and in some situations, also have the ability to notify key
personnel via email, mobile and text messages. Tools such as webMethods Manager can
communicate with the system management console (Tivoli) through the OMI specification, which
defines the standard way of accessing and managing the integration platform components and
the associated business processes.

Please refer to Section 8.0, Systems Management Architecture, for more information regarding
Tivoli.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 103
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.5.3 Key Concepts, Features and Capabilities

4.5.3.1 Integration

This section describes concepts such as documents and services, features such as assured
delivery, and capabilities such as the exchange of documents with business partners.

45.3.1.1 Services

Services embody the processes and the logic for business tasks. A service can be connected to a
resource, retrieve data from a resource, transform the data or message into another format and
route the results to the consumers via Broker or by invoking processes for the target resource.

UCMS services utilize the webMethods supplied pre-packaged bundle and also custom
development when a particular interface or process was not provided by webMethods.

45.3.1.2 Documents

A webMethods “document” represents the body of data that a resource passes to webMethods
components (or vice versa) and does not necessarily imply an actual document or file.
Documents may be the outcome of a business event such as filing a tax return (a tax return
document might contain fields such as SSN, YTD) or adding a new employer (a new employer
document might contain fields such as SSN, Last Name, First Name).

The UCMS ESB handles various types of (actual) documents such as XML, EDI, WSDL, SAP
(IDocs), and flat file data produced by or consumed by external business partners and internal
enterprise systems. The received documents are converted to an internal format that
webMethods components act upon (and as noted above, are still referred to as a “document”). A
document remains in this internal format as it travels through the integration backbone (for
example, from Integration Server to Broker). If the document has to be sent to a particular back-
end application or system, it is then converted to a native format by the adapter or to the format
which the application or system understands.

45.3.1.3 Web Services

ESB decoupled services are made available as a web services allowing service consumers to be
connected to service providers in a protocol-independent manner, and as a result both can be
unaware of the other (i.e., no connection-by-connection code changes are needed to support
information exchanges). This benefits both internal connections within an enterprise and external
connections to business partners

As a Web service provider, webMethods can also expose any of its own services as a Web
service. This simple but powerful capability extends the existing data and logic of the back-end
resources to any Web service-compliant client inside or outside the enterprise. As a Web service
consumer, webMethods can invoke a Web service anywhere on the Internet or intranet.

UCMS maintains a Universal Description And Discovery Interface (UDDI)-based registry catalog
that can be interrogated in real-time to determine the WSDL, endpoint, and specific attributes of
the requested service, and to perform the necessary bindings between the service consumer and
caller. However, it is also possible to “hard-wire” services to connect to endpoints, without a
registry. While not as flexible as using a registry, and more difficult to maintain, this approach
usually results in higher performance.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 104
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

OOESH Ftesnen Ftend

[9 Userstney CPotdratd | | #0Aogk 2100 Servioes Ak anon Snces | | SOESBESE | | sOWEbSOeE Process YITow WEOSHhee 21 00ees WikkRow I
i svoyt——— - l —— - ———e—— [- ——— ' § =2 l J t——— e ——— I Atz AT - -
| \ |
1 Logon to Partd | | |
\ 11: Recuest Task; List \ !
’ »>
[L4 Fwoks b Seovem |

1102 Inetkn Web Serws iy Task Lt

L1 14 Rempoees with Tas List

1.1.1.43: Depiay Task: Lt 07 wigh pacm
—

U

111141 Resporsn with Task (6t
¥

11142 Regose wih Tk List

! et e

Figure 4.5-3: ESB Interaction with UCMS Components

In the example shown in the Figure above, it can be seen that a user request from the Portal is
processed by Application Services, which sends the request to the ESB by invoking a web
service. Then the ESB invokes a corresponding web service in the process server, and the
service response is sent to the original requestor through the ESB to be displayed in the returned
web page.

4.5.3.1.4 Message Routing and Transformation

Materials from external partners are routed to internal applications, and where required this may
involve transforming a message or data to a resource-specific format and vice-versa. UCMS has
many types of “partners”, and in this context, Agencies such as the DOR and IRS provide
documents, files, or other data.

UCMS configures appropriate processing rules/routing rules for external partners and internal
systems to consume the messages/documents from source systems, and converts them to
webMethods native format by mapping and data transformation as required. For example, a
native document can be routed to other webMethods components for further processing,
otherwise it will be delivered to the target systems by invoking the routing rules for that
document/partner. The Broker routes the documents within the enterprise, or documents or other
materials can be routed using fixed routing mechanisms (file transfers, Messages, etc.).

45.3.1.5 Broker
Broker acts as a high-speed messaging backbone for UCMS and an event driven architecture; it
provides the infrastructure for implementing asynchronous, guaranteed message delivery and

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 105
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

routing in a highly efficient, decoupled and scalable architecture for message-based solutions that
are built on the publish-and-subscribe model or one of its variants, request/reply or publish-and-
wait. The guaranteed-delivery feature of the Broker ensures one-time delivery of document to the
subscriber. If the subscriber is not available the document is put in the queue and delivered when
the subscriber(s) resume.

4.5.3.1.6 Assured Delivery

All critical interfaces in the ESB use the Guaranteed Delivery facility of Integration Server, which
ensures guaranteed, one-time execution of services. Guaranteed Delivery protects transactional
requests from transient failures that might occur on the network, in the client, or on the server.

4.5.3.1.7 Supported Protocols

The UCMS ESB supports multiple protocols to move the data across networks, whether they are
Internet, private networks, or local and wide area network (LANs and WANS). The standards in
use at this level provide transport interoperability between servers, desktops, routers, and other
components, for data traffic, files and other network traffic. Protocols such as HTTP/HTTPS,
FTP/FTPS, SMTP (email), IMS and SOAP are popular industry standard transport layers for
secure/non-secure data transfers.

4.5.3.1.8 Built-in Adapters and Custom Adapters

UCMS uses the ESB to communicate with the DLI Enterprise systems. The ESB built-in adapters
are capable of exposing data and business logic to any enterprise system. Custom adapters, built
using product specific APIs using languages including Java, C, and C++, are built for resources
which don’t have built-in adapters. The following adapters are used

o JDBC Adapter for any RDBMS (Sybase, DB2, MS SQL Server, Oracle)
o WebSphere MQ Adapter for Message Queue

4.5.3.1.9 Exchange of Documents with Business Partners

UCMS supports a set of organizations that have agreed to exchange business documents with
DLI. This provides document persistence (inbound and outbound), partner validation, scheduled
or batch delivery and secure communication using SSL.

Interactions can occur, for example, when documents are FTP’d to UCMS, and then routed (via
the ESB) and made available to FileNet for further processing, which, in this scenario, returns a
Document ID.

4.5.3.1.10Security

UCMS ESB provides security protections for access control, authentication and data privacy
including encryption for confidentiality and digital signatures for data integrity. UserID and
Password authentication are used for interaction with DLI enterprise back end systems.

Access Control: Access Control Lists are created on the Integration Server, limiting requests to
specified addresses or domains. It also restricts which resources are accessible through an
individual port.

Authentication: UCMS uses standard user name/password authentication over HTTP, HTTPS,
FTP and e-mail connections with external partners. Partner identity is authenticated against
SiteMinder IAM credentials.

Data Privacy: The ESB communicates with external partners using secure sockets layer (SSL)
and data encryption. By adding Digital Signatures to the data sent out and, verifying those
signatures at the receiving server using industry standard digital signatures based on S/IMIME, it
is possible to prove that a given document originated from a particular computer or user.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 106
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.5.3.1.11Scalability

UCMS uses high capacity servers to run the Integration and Broker servers in a clustered
configuration, thus increasing throughput and improving performance by distributing requests
among a group of servers. The Integration Server cluster provides automatic redirection of
inbound requests when servers reach a defined capacity threshold. This ensures even
distribution of processing in high volume data exchanges situations. A third party load balancer
can be used to redirect requests to Integration Server.

4.6 Business Rules

4.6.1 Introduction

Sretoms Wanagement | Reporing Sorvces |
[Forar somiees| d "

[Universes)

{ reports

Portal
OB

BOENt|

<\ (Tivoli Enterpris
| von

[B
_Console) \

B

Security Sevmce;

(SiteMinder)
P Aciive
L Directory

‘Application Services

WebSphere | 5
Aoplation | {wasos
Server
Co aching ceptiol
Fn Fmwk iandling

Local Data Services,

‘/ Oracle \‘

Reporting
Database

Domain
Object

Browser
Client

i
Java Client
Mobile
g | Syne

Rules
Studio

Corticon
Collaborator

%usmess Analyst Workilow Services

enfepes |

Form Services

(Livecycle)

Designer)(orm) uvccwc“
Y Y Templates Forms |

“:

| [webspherd
\

{ fegration

server

N cBE

__| Application |/
Engine

A (capture

Low-Volume FileNet Tmage
Scan Station b8 Files

Figure 4.6-1: Business Rules Context

UCMS is largely rule-driven, with most of the rules derived from laws, regulations, policy, and
common accounting principles. Corticon Business Rules Management provides a complete self-
contained rule-modeling development environment that deploys rules to the rules server. Corticon
addresses user friendliness and performance issues associated with rules management. For
UCMS, Corticon is used for both application-based and workflow-based rules processing.

The following sections describe the components and key features of Corticon Business Rules
Management.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 107
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.6.2 Component Overview

Application Services |

WebSphere
Application

Portlet

Business
Process

Component

Business Analyst

Figure 4.6-2: Business Rules Components

Corticon Business Rules Server is a high-performance, scalable system resource that
manages pools of Decision Services providing the runtime execution of business rules. A
Decision Service is a discrete decision-making task implemented as a Rule Set.

Corticon Business Rules Modeling Studio is a business rules modeling and authoring
environment used to define rules and rule sets using a user friendly spreadsheet-like interface.

Corticon Business Rules Collaborator is team development environment used to manage rule
assets through their entire lifecycle; from inception, and modeling through integration and
deployment.

4.6.2.1 Run-Time

This section describes the Corticon Business Rules run-time components.

4.6.2.1.1 Corticon Business Rules Server

Corticon Business Rules Server uses “Design-Time Inference” instead of the more common
“Execution Time Inference” approach to rule creation. Design Time inference consists of three
steps: determining the relationships among rules (dependency network construction), resolving
conflicts among those rules, and determining an answer based on submitted data and the set of
rules (pattern matching)

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 108
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Execution Time Inference rules systems are based on the RETES algorithm. They perform all
three of the Rules inference steps each time a decision is made, at run-time. While this works
well in expert systems, it can be inefficient in high volume discrete decision making situations.

Design Time Inference performs the first two steps one time, when the rule set is compiled.

When a decision needs to be made at runtime the only step required is the pattern matching. This
makes it faster and more efficient than many RETE-based systems, although RETE systems
have since reduced the performance differences by implementing hybrid rule processing.

The Rules Server is deployed to a J2EE Application Server where it is accessed by application
functions and workflows. Due to the optimized nature of the generated rule sets, the Corticon
Rules Server scales well as usage increases. The Corticon Rules Server has been benchmarked
to execute millions of decisions per day, and scales linearly with increased hardware processing
power.

The Corticon Server component executes individual Decision Services, which were developed as
Rule Sets using the Corticon Business Rules Modeling Studio. The Rules Server is based on
industry and open standards, such as J2EE and XML. It has near-real-time hot deployment of
rules from Corticon Studio. Decision Services are performed using standard SOAP-based Web
services or using Java APl method calls.

4.6.2.2 Design-Time

This section describes the Corticon Business Rules design-time components.

4.6.2.2.1 Corticon Business Rules Modeling Studio

Corticon Business Rules Modeling Studio is a business rules modeling and authoring
environment. Itis uses a spreadsheet-like interface that is easy for non-technical staff to work
with. It also provides significant quality assurance advances, checking for rule collisions and
logical holes at design time, rather than requiring labor-intensive testing later in the
design/deploy/deliver life cycle.

The Corticon Studio rules creation tool allows business users to create rule services, and perform
rule testing. Corticon Studio provides a spreadsheet-like user interface, allowing users to create
rule conditions using drag-and-drop functionality, utilizing a library of pre-defined functions. Users
can visualize the complete rule set in the Studio tool, unlike rules engines which construct
complete rules only at execution time. This approach helps to ensure no gaps exist in business
rules, something which can’t be done at run-time using some other rules management products,
although most tools have improved their design-time visualization and testing capabilities since
the time that Corticon was selected and implemented for UCMS.

5 RETE, usually pronounced either 'REET’, 'REE-tee’ or, in Europe, 're-tay' after the Latin pronunciation, is derived from the Latin
'rete’ for net, or network.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 109
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Pl Ot Vocobulwy AueSet |- Window e
= —_ % — — ————
le v *HE, | |48 2=EENE 00000 H
[S¥rogeer .]DJ}JI B Rule Set -)/ stalfware/ swserver /staflwaredemeo gre ndrmcer - Ve 10 x|
Vocabubry | Fude Sets | Tests | B st bves | 1b trame | 10 balsncechack | @ CozoProcesd |
'_—'7 z oles 3 S(ODF
=-5] Recount | Tem A
- ouctType T' -
- class 2 ’
= currentBalancey 3 |
B mrilrcaliegd Precondtives /Fiters £
o terimt . =
= customar (Customer) S| |
= o+ ransaction (Trarsaction) ! '5" - i
- ok -
=™ Rubers (mon-conditionasd) # |
=4 permTon LR ActMrinuns. gad = O - i
= suffioertFunds [NE Acctirimins, shver @ 1000
= banAction | 8 AcciMvariss. bronse = SO00
5§ wihin Tl NA |
=] ActMedrums Rules <
54 broros .. Condbors _ l Vs —e 1" 2 T 3 T ¢« T & [¢ I
=4 ok |1 acrmnt.cam | 1'Gokf , ‘Shver', Brorew’ | | Gok | ‘S’ | Broree’ | | l -
o sher 21 | | ‘ [|
=2 Customer 3
b 4 moount {Acoourt) " |
¥ -] ProcessRules '3 |
#- =] Trareaction 51 « i
T atore 1_V&.m [= ~ = |
|1 Account mrBslanceRegd = Accthnmurs ool | | i | -
- 2 Account Sl oRogd = ActNnus sbeer v
i ;’f""e' =N 3 accourt mrBslarceRegd « AcctNinmune bronge | i | i e
) Ltenak] 1 | 1
] Functions Fs1
Opmeators +
e :, Bodioan J -
-] Date Overridms. |
&) Deoesdd Rule State i -
#-] Integer j IO jTedt e ey T =
O |1 5oM accounts havw & s balance requesment of $0 |
@) Entky 2 Siver accounts have a v balance requrement of $1000 |
#-_) Colaction |3 tronoe accourks have o mewmum balance requrement of $5000
i) Sequence -
I 7 etancoee i
Ll B — - = - -

Figure 4.6-3: Corticon Business Rules Modeling Studio

4.6.2.2.2 Corticon Business Rules Collaborator

Corticon Business Rules Collaborator (BRC) is a team development environment used to
manage rule assets throughout their lifecycle; from inception and modeling to integration and
deployment. BRC provides the critical capabilities needed to control business rules development
such as rules version and access management, workflows for rule approval processes, and rule
change impact analysis. It is a web-based solution enabling project teams to work together,
facilitating interactions, managing rule-project assets, and driving tasks to completion.

4.6.2.3 Administrative and Monitoring

4.6.2.3.1 Deploying Rules as Decision Services

Rules are organized into Rules Sets. Rule Sets are deployed to the Corticon Business Rules
Server as Decision Services. The deployment of these services is accomplished through the
Corticon Deployment Console utility that comes with the Corticon Business Rules Server.
Decision Services are exported from the Corticon Business Rules Modeling Studio as a “.ccj” file.
This file is then placed on the Web Application Server that is hosting the Corticon Business Rules
Server. The Corticon Deployment Console creates deployment descriptors as “.ccd” files. These
files provide all of the configuration information needed by the Corticon Business Rules Server to
make the Decision Service available to be performed.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 110
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.6.3 Key Concepts, Features and Capabilities

4.6.3.1 Vocabulary

The Vocabulary provides the basic elements of the rule language, the building blocks with which
business rules are implemented in Corticon Business Rules Modeling Studio. It is an abstracted
version of a data model that contains the objects used in the business rules. It provides terms
that represent business “things” such as entities and attributes that are defined in terms of the
specific business involved (for UCMS, they are defined in terms of Unemployment Compensation
concepts). The Vocabulary can be manually created or loaded from a JDBC connection.

The Vocabulary provides a federated data model that consolidates entities and attributes from
various enterprise data resources. It also provides a built-in library of literal terms and operators
that can be applied to entities or attributes in the Vocabulary when constructing a rule.

The Vocabulary is used to define a schema for sending and receiving data from a Corticon
Decision Service. Since XML messaging is used to carry data to and from the rules for
evaluation, data must be organized in a pre-defined structure (called a schema) that can be
understood and processed by the rules engine. An XML schema that accomplishes this purpose
can be automatically generated directly from the Vocabulary.

4.6.3.2 Business Rule

Business Rules are used to create and change critical business decision logic quickly and reliably
without altering software code. Business Rules are organized as Rules, Rule Sheets and Rule
Sets. These facilitate separation of concerns and service re-use. A Vocabulary section is also
used for XSD generation. Finally, rules are logically organized as granular rule decision services
for appropriate consumption of the rules by external clients.

4.6.3.3 Rule Set

A Rule Set is the central, independent unit of automated decision-making. It is a set of one or
more Rule Sheets that have been tested and validated using the Corticon Business Rules
Modeling Studio. Following test and validation, a Rule Set may be deployed into a production
environment.

Note: Once deployed and available to other IT systems, a Rule Set is

referred to as a Decision Service.

4.6.3.4 Decision Services

A Decision Service is used to automate a discrete decision-making task. It is implemented as a
set of business rules and exposed as a Web Service or a Java Service. Rules within a Decision
Service are complete and unambiguous and for a given set of inputs, the Decision Service
addresses every logical possibility uniquely, ensuring “decision integrity”.

Performing Decision Services

There are three options used to perform Decision Services running on the Corticon Business
Rules Server. The specific option used depends on the capabilities of the consumer, desired
level of decoupling and performance requirements.

Web Services offers the greatest degree of both flexibility and reuse. It uses the standards of
Web Services (including XML, SOAP, HTTP, WSDL, and XSD), this choice offers the greatest
degree of both flexibility and reuse. The Deployment Console (or Deployment Console API) is

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 111
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

used to auto-generate WSDL files for each Decision Service. These WSDL files are used to
integrate the Decision Services into Consuming applications as standard Web Services.

The Java API uses Java objects conforming to the JavaBeans specification. Each Java class
corresponds to an entity in the Corticon Decision Service Vocabulary. Corticon Server uses
introspection to identify the entity’s attributes. This option offers the best performance, as
payloads do not need to transform objects to/from XML. However; it is the least portable due to it
the requirement that the associated Java objects be present in order for the decision service to
proceed. In addition, it suffers in flexibility because changes to the Vocabulary require changes to
the Java object model.

The Java API option has a variation than allows the payload of the Java Service to be XML
instead of Java objects. This approach avoids the overhead of SOAP messaging while still
decoupling the decision consumer from the Java object model.

4.6.3.5 Scalability

Corticon Business Rules Server is supported in a clustered environment. The number of
wrappers (EJBs, Servlets, etc.) will usually equal the number of CPU’s on the server hardware.
This number should be greater than or equal to the highest pool setting for any deployed Decision
Servers.

4.7 Document Management

4.7.1 Introduction

Browser
Client

% Workplace
FileNet Content
Administrator Enterprise) Admin
Manager

A capture

Low-Volume
Scan Station

Figure 4.7-1: Document Services Context

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 112
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Electronic images and documents of Unemployment Compensation information must be captured
from a variety of channels and stored in a central repository for future retrieval and reference.
FileNet P8 Components provide the foundation for the Image and document management
solution of UCMS.

The following sections describe the components and key features of the UCMS Document
Management architecture.

4.7.2 Component Overview

@ Document Services l

<’ Wo rkplace Content Application
. Collector Enaine
FlleNet cOntent g

Administrator Enterprise | Admin
Manager

@ Capture
Deskto
A .

Low-Volume
Scan Station

Figure 4.7-2: Document Services Components

4.7.2.1 Run-Time

The following FileNet P8 components are used to provide comprehensive Image and Document
Management functionality to the UCMS.

o FileNet P8 Content Manager (CM) — The Content Manager (CM) provides the services for
managing enterprise content. For the UCMS application this content will be static TIFF and
PDF documents. When documents are committed to the Content Manager Object Store, a
Document Arrival Event Notification is sent to the UCMS Workflow Component that triggers
the appropriate workflow for routing.

e |IBM Content Collector (ICC) - ICC is the main ingestion mechanism for bringing documents
into the FileNet P8 System. It continuously polls a set of directories and based on pre-defined
business rules configured into the ICC software, each of the images or documents and their
metadata are retrieved and committed into the FileNet Content Manager Object Store.

e FileNet Desktop Capture Personal Edition with Doc Pro — This is the secondary method
that is used for ingesting documents into the system. Desktop Capture provides file import or
ad-hoc scanning through the use of low volume desktop scanners. FileNet's Desktop Capture
is used to scan, image verify, index, assemble and commit the documents to the Content
Manager Object Store. Multi-page zonal OCR capabilities can be used to automate the
indexing process.

e Database Server — The Oracle Database Server provides database support for the FileNet
Content Manager and is where the document metadata is stored.

e A Storage Area Network (SAN) — This is not a FileNet component but provides the storage
medium for all the documents managed by the Content Manager. Refer to Section 7.0 —
Operational Architecture for more information.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 113
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.7.2.2 Design-Time

The Content Java APIs and the Content Engine Web Services are used to create the
necessary Document Service Components. This provides each of the UCMS applications, as
needed, with the ability to query and retrieve documents and images, update a document’s or
image’s metadata, and provide the ability to add and maintain image annotations. The UCMS
applications communicate to the ESB through the UCMS Framework components to invoke the
appropriate Document Service Component to communicate with the FileNet Content Manager.

The Content Java API provides networked, Java-based access to commonly-used objects and
methods within the COM API. The Content Java API consists of Java-based and COM-based
logical architectural subcomponents, and the transport between them.

The Java-based components are platform-neutral and generally provide a thin wrapping around
remote procedure calls. They perform the marshalling and un-marshalling of parameters for
serialization and deserialization. For specific objects, they can also provide limited, transparent,
caching of object property values.

The Content Engine Web Service (CEWS) is an industry standards-conformant SOAP interface
to the P8 Content Engine. It allows applications to access most of the functionality available
through the Content Engine COM API. CEWS provides general-purpose SOAP operations
(methods) and elements that expose all of the Content Engine objects and most of their
properties and methods.

4.7.2.3 Administrative and Monitoring

There are many tools which are used to administer and monitor the various FileNet components:

o FileNet Application Engine (AE) - The Application Engine (AE) is the presentation layer for
FileNet P8 Content Manager and provides some administrative functionality to the Content
Manager via a web interface called Workplace. Objectstore configuration options can be set
through Workplace.

o FileNet Enterprise Manager -FileNet Content Manager is also administered and configured
using this Windows Manager snap-in tool. FileNet Enterprise Manager provides the
capabilities to create all of the objects necessary for document management including
objectstores, document classes, document properties or indexes, event action scripts, and
filestore configurations.

e ICC Manager - ICC is administered and configured using this interface that resides on the
ICC Server. This tool assists the user in creating the business rules to identify and index
documents and images, identify network locations to monitor, set monitoring time interval
configurations and configure Objectstore document storage locations.

o Desktop Capture Manager- FileNet Desktop Capture is administered through this
component that is part of the FileNet Desktop Capture Software. Configuration is done
through the FileNet Desktop Capture software to set up pre-set scanning, indexing and
processing settings for each of the different type of documents that are scanned. Statistics
logging can be used to monitor the productivity and volumes of documents scanned at each
workstation.

While monitoring of events occurs using monitoring tools available with FileNet, critical alerts are
forwarded to Tivoli Omnibus for review and possible follow-up, e.g., creation of DLI ServiceNow
Ticket. Please refer to Section 8.0, Systems Management Architecture, for more information.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 114
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.7.3 Key Concepts, Features and Capabilities

4.7.3.1 Document Ingestion

Document ingestion occurs in four separate channels.

Document Capture from
Department of Revenue (DOR)

() ﬁﬂ.’t’m

I

mages and Data Files

sent to shared fider
monitored by Content
Collector - ; !
Filehet Content FileMet Content hanager Orade
(DOR) Collector Server Database Serwer Hr hietadata
Storage

Figure 4.7-3: Document Capture from DOR

Document images and their metadata generated from the Department of Revenue’s Brookwood
Street scanning facility are received by the ESB then ingested by the FileNet Content Collector
(ICC). The images and the metadata are placed on a shared network drive that is monitored by
ICC. ICC is configured using pre-defined business rules to identify these images and add them,
and their metadata, for placement in the Content Engine Object Store. ICC can flexibly be
configured to pick up documents once or several times a day based on the needs of the DLI.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 115
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Outhound Document Capture from
Acobe Servers

BAN
D it v d
[

(Erkpne S=uk= 815

B FileNet Content File Net Comentruhna er Oracle
? % Collector Sener ¢ Database Server
Adobe Central Pro
Output Sener

Figure 4.7-4: Document Capture from Adobe (Correspondence)

¢ Web Form Documents that are generated from the Adobe Form Server are sent through the
ESB to a shared network drive that is monitored by the IBM Content Collector, which is
configured using pre-defined business rules to identify these documents and add them and
their metadata to the FileNet Content Engine Object Store.

e Outgoing Correspondence Documents generated from the Adobe LiveCycle and is also sent
through the ESB to a shared network drive that is monitored by the ICC. ICC is configured
using pre-defined business rules to identify these documents and add them and their
metadata to the FileNet Content Engine Object Store.

Ad Hoc Document Capture

SAN
Omcsrmnie wrd
Ty -

& —E w

FlleNet Cantent Maneger Oracle

Berver
Outanmse Berver

Lum Valume Bcunner ans
Flle Net Capture Oe sktap

Figure 4.7-5: Ad hoc Document Capture

Personnel at the main and regional offices of the DLI use FileNet Desktop Capture Personal
Edition with Doc Pro to ingest documents on an ad-hoc basis. FileNet's Desktop Capture
provides an interface for file import or scanning through the use of low volume desktop scanners
that are located at each of these offices.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 116
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.7.3.2 Document Retrieval

The Content Java APIs and the Content Engine Web Services are used to create the necessary
Document Service Components that provide the ability to search and retrieve the documents and
images in the FileNet Content Manager Object Store. The retrieved documents or images are
displayed via the Web browser using the appropriate plug-in or applet based on MIME type.

4.7.3.3 Security

FileNet is protected from unauthorized access using authentication and authorization control
mechanisms as well as network and operating system controls. The authentication and
authorization is performed by SiteMinder when the user initially enters the Portals. Access to
FileNet is controlled at the Portlet level based upon the user’'s SiteMinder role. Users invoke
FileNet through a service account from the Portal. Therefore, all security decisions for the users
are determined prior to accessing FileNet. FileNet uses native application security mechanisms
to authenticate and authorize the service accounts accessing FileNet.

In addition, the network and host infrastructure supporting the applications are controlled through
access control lists and operating system controls to limit access only to authorized objects.

4.7.3.4 Scalability

e Application Engine (AE) - Scales by adding additional servers (AESs) to the AE server farm.

e Content Engine — In order to scale the Content Engine (CE) the following would have to be
done:

— One component of the Content Engine, the File Store Service, can be moved to a
separate and dedicated server (note — For High Availability purposes this should be an
Active/Passive cluster). This is because the File Store Service is NOT farmable.

— Take the existing Content Engine (CE) cluster and turn it into a server farm with a load
balancer in front.

— CE capacity can then be met by adding addition servers to the CE server farm.

e IBM Content Collector — This is scaled by adding additional ICC servers. Since this is not a
farmable server, each ICC polls a separate set of directories. For example, one polls a
directory in which the Correspondence documents are dropped while another polls the
directory where the DOR images are dropped.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 117
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.8 Correspondence Management

4.8.1 Introduction

Figure 4.8-1: Correspondence Management Context

Correspondence Management on UCMS has to do with what are considered to be forms from a
technical standpoint. Forms in the technical sense address what, in a traditional sense, are
considered to be forms to be filled out (e.g., a UC-2A Wage Detail Report) and computer-
generated notices, letters and documents (e.g., UC-44F Notice of Financial Determination, Notice
of Hearing).

In the broadest sense, forms combine a template containing standard wording, with details
specific to the case (e.g., an address or Social Security number). The details may be captured
from a customer or an employee, may be pre-filled from the database, or may be sourced from a
combination of the two. In computer systems, these are implemented as electronic forms
(eForms) and as system-generated output.

On UCMS, these capabilities are based on Adobe LiveCycle Forms

LiveCycle Forms enable UCMS to deploy electronic forms in PDF or HTML format over the
Internet. End users are able to use their Adobe Reader or browser to access forms and fill them
out, without downloading any additional software. Their form data is then submitted to UCMS
business applications. Some specific functions of LiveCycle Forms include:

e Automatically detects the browser type and platform, and then dynamically generates a
HTML document based on a form design (typically created in Adobe LiveCycle Designer)

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 118
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

For dynamic subforms, adds extra fields and boilerplate as a result of merging the form
design with data or as a result of scripting

Validates data entry by performing calculations, accessing databases, or enforcing business
rules on field-level data, and then returns the resulting data to the browser

Extracts submitted form data as XML

LiveCycle Forms also function as a PDF rendering engine for UCMS line-of-business
applications. For instance, it could be used to create a hearing notice for a custom hearing
scheduling function.

Adobe LiveCycle is used to implement the generation and distribution of high-volume outbound
correspondence, forms and notices.

LiveCycle supports many aspects of document output from high-volume distributed printing to
PDF generation for Web delivery, and offers multiple language and platform support. Some
highlights include:

Generates dynamic output that grows or shrinks as necessary to accommodate the amount
of data

Supports a wide variety of input formats, including XML, plain text, legacy, and DAT
Supports printer features such as duplexing, tray selection, flash RAM, and hard disks
Reduces network traffic because Output Server data stream contains data elements only
Supports multiple languages and currencies

Supports fax and e-mail delivery of documents

Performs data stream calculations

The following sections describe the components and key features of the UCMS Correspondence
Management architecture.

4.8.2

Component Overview

L

Form Author

=i \ Admin

Administrator

Form Services

LiveCycle
\ Designer

Form LiveCycle
Templates Forms

Figure 4.8-2: Correspondance Management Components

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

119

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.8.2.1 Run-Time

4.8.2.1.1 LiveCycle Forms

LiveCycle Forms APIs provide public Java interfaces for different modules. Each module runs as
a Java 2 Enterprise Edition (J2EE) service on your J2EE application server. A Java development
environment is used to create applications, such as Java servlets, that interact with specific
modules. For example, a Java servlet can be created that invokes the Form Server Module in
response to an end user clicking a link that is displayed within a web browser.

Web Server J2EE Application Server
EJB Client API RMI i ‘ Java API
) y Form Server Module
o >
/
SOAPClientAPl | &8 Java AP
fer J g XML Form Module
Microsoft NET Java AP)
Client Assembly a e
>

Figure 4.8-3: LiveCycle Forms Architecture

Form Server Module API

The primary interface to LiveCycle Forms on UCMS is the Form Server Module API. A client
application that uses the Form Server Module API is able to invoke the Form Server Module and
instruct it to perform tasks such as rendering forms, processing submitted data, and
prepopulating forms with data.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 120
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Enterprise Boundary

Z=2 4 w Form
. | 7 | HTTPRequest A — Repostiary
E[j} ' Internet : — HTTP Response
3 l Web Server J2EE application server
Client Web Browser e hosting the Form Server
Carporate Module and a custom
{Requires Adobe Readar) VA Firewall application

Enterprise

An XML form displayed as PDF Database

Figure 4.8-4: Application Integration with Form Server Module

The Form Server Module sends forms across a network and renders them to client devices, such
as web browsers.

A client application that uses the Form Server Module API is able to retrieve the data submitted
with a form. For example, when a user fills in a form and submits it, a client application can
retrieve the data that the user entered in the form’s fields. The client application can then process
the data in a variety of ways, such as performing calculations, storing it in an enterprise database,
or sending it to another application, such as an application that authorizes credit cards.

The Form Server Module can pre-populate a form prior to rendering it. Pre-populating a form
involves inserting data into a form. For example, a client application can query data from a
database and instruct the Form Server Module to insert the data into a form and then render the
form. Once the form is rendered to a client web browser, the user is able to view the data in the
displayed form.

Using the Form Server Module, different types of client applications can be created that interact
with the Form Server Module, such as Java servlets or JSPs. The Form Server Module performs
the following functions:

¢ Provides server-side execution of the intelligence that is in the form design. The Form Server
Module executes the validations and calculations included in the form design and returns the
resulting data to the browser.

o Detects whether form design scripts should run on the client or the server. For clients that
support client-side scripting such as Internet Explorer 5.0 and later, an appropriate scripting
model is loaded into the device so that the scripts can run directly on the client computer. For
information about the properties and methods supported in each transformation, see the
LiveCycle Designer Help.

¢ Dynamically generates a PDF or an HTML document of the form design with or without data.
An HTML form can deliver multipage forms page by page. In contrast, a PDF form delivers all
the pages at once. In LiveCycle Designer, the form author can script the current page number
in the form design. The Form Server Module can merge one page of data submitted at a time
or merge only the single page into the form design.

e Supports dynamic subforms created in LiveCycle Designer. Form Server Module adds extra
fields and boilerplate as a result of merging the form design with data or as a result of
scripting. In the case of HTML, the added subforms can grow to unlimited page lengths. In
the case of PDF, the added subforms paginate at the page lengths specified in the form
design.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 121
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Validates data entry by performing calculations, accessing databases, or enforcing business
rules on field-level data.

o Displays validation errors in different ways (split frame left, top, right, bottom; no frame left,
top, right, bottom; or no Ul). This is all done without maintaining any state on the server. The
validation errors are also made available in the XML-based validation error document.

e Maintains the state of any pass-through data that has been passed in by the application.
Pass-through data is data that does not have corresponding fields on the form design being
processed. The pass-through data is passed back to the calling application after the target
device submits the data.

Confirmation)
HandleData Merge Data Form -~ ‘

(Java Serviet) (Confirm.xdp) .‘l ‘J

Client Web Browser
. —

Figure 4.8-5: Pre-populating a Form

As mentioned above, the Form Server Module API can be used to create a client application
capable of pre-populating a form. Consider a loan application. After data is submitted to a
HandleData Java servlet, a confirmation form is rendered back to the web browser. This form
contains data that the user entered into the loan application. It is in this way that UCMS custom
applications use LiveCycle Forms as a PDF rendering engine.

Deployment Options

As shown in the LiveCycle Forms Architecture diagram above, the Form Server module can be
invoked via RMI or SOAP protocols. This offers architectural options:

e Locally Invoking Form Server Module

The Form Server Module can be locally invoked using the EJBClient class. In this situation,
the client application that contains the invoking EJBClient object is located on the same J2EE
application server hosting Form Server Module.

e Remotely Invoking Form Server Module

The Form Server Module can be remotely invoked using an EJBClient object. In this
situation, the client application that contains the invoking EJBClient object and the Form
Server Module are located on separate J2EE application servers.

¢ Invoking Form Server Module using SOAP

The Form Server Module can be remotely invoked using a SOAPCIlient object. The client
application that contains the invoking SOAPClIient object is usually installed on a separate
J2EE application server from the J2EE application server hosting the Form Server Module.

The two J2EE application servers do not have to be the same and can also be running on
different operating systems. For example, the J2EE application server hosting the client
application may be running on Windows, and the J2EE application server hosting the Form
Server Module may be running on UNIX. SOAP works through firewalls and can be load
balanced using HTTP load-balancing tools. In addition, the SOAPClient object can be used to
locally invoke the Form Server Module.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 122
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.8.2.2 Design-Time

4.8.2.2.1 LiveCycle Designer

LiveCycle Designer software enables form authors to design forms, maintain form templates,
define a form's business logic, and preview forms before they are deployed as Adobe PDF files or

HTML documents.

T BN e bt Tl Lovad oo fndee el

J=23M 4D @l w@

- Ml

ROF Shnve
= o DO
P2 grorviersn
B e pelade
e

¥ Aecheaet

TRTOSTORSTRCE 1 FeTULERT T vy
| M o e euned (M M

L

M
Lot N
SO TS VTR T

s of ST ROV WYY

| M o M!S
st have
MO have

Lol N
oo

Pokyy

i Chack Oas P
: — Crop coowt List O St
T 0o vore LA Oowee &L= reden ior o e g
2 \l : L P £ L . e 6«...‘. et
CFves Bustan (O
EAse et
Teat Fedt
3) Redet
Thsurance Application
i » Lates
Ty
» Barvite
Ofect H N

[Pk | Docwwent Sgroase
[5] Lk Puks AfAwr Sy
Caflactan - agobcant_soctan
(5 W Mtk = Calecion
O 8 Foeits 1ot e Coeion

X PTOROTY PYRTTOC T Yaes Toad !

> b

Seuberet) Tt Nars ."',-l;- L L
a'zun GGasds] Mok B W AR A ; g
/ FagerslD 3 - Lont Nares e vty adeng Cagrn and Vaka L
3 [Agphcartin® s | iy ~
D o S s aid - .
- F":,_‘:‘,".' L the Apphcant hmretsy cor by et btk oy e St 1S Bmsosdve | oo
nEn e B - U -- A
2 bperiwrive @ :’:ﬁ:n’:::-?:l::-rm o e ::n- oy I::n‘t:‘('
y »:u_,_ 9 he Epphed for fa crfereal thas Ibe palicy Maviretion stowe (0 v, set | Sadersiend el & pokcy
X «'”\.I Masyatan cosfarreng by Sw potcy € Dosed wi be mrovided no kiter lhas of B Ses e Dolcy 5 dedveed
’};ilw; . e T L T Ly er—" e ——
iy g o on Bus foest end | . s fobicy &3 bowed wil be
7] ém' IOVERE 10 WA Than of 1 Thre The Doy 8 dodmsd
&y T3
5 ,:; e S OO DATASYXTRYRY
¥ Courdry 1 COTENNE TS S0LI4 U A CHEOUREECTURN BT W0 1 shews
~Lay .'.t.'a.v fFarsondTh 1 Ceve | St Dals Davett
.l “':....-.,.. R —— | Prewam arcest wrane
iy T —— [olensie
'I Mddetam e revin) | Rty) 5008 G Mo of Poky Youn B
AT 3 1 U PRe T B di)
| aeed 7 ooy N
e - Frdes S ! ~
-» '
Easily add and integrate Easily create and update Use libraries to drag and Set the parameters for
your databases and web the design, objects, XML, drop commonly needed each object, including:
services with drag-and- scripting, and source code form objects onto the . Appearance
drop data binding. for a multipage template, template.

« Conditions of use

+ Image/media handling

Figure 4.8-6: LiveCycle Designer Overview

A unified design environment lets form authors lay out templates, incorporate business logic, and
preview forms in real time. Authors use an intuitive grid layout and drag-and-drop libraries to
position graphics, enter text, and add form objects such as list boxes, drop-down lists, command
buttons, and checkboxes. They can then render a single template into multiple formats to suit
audience preference, type of data to be captured, or the platform being used.

°
increase accuracy.

forms that integrate with core systems and reduce integration costs.

Create forms that validate data, perform calculations, and automatically check for errors to

Bind form fields to XML schemas, databases, or Web services for creation of more intelligent

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

123

e Build forms that can be published to multiple formats that users can view with Adobe Reader
or a Web browser.

4.8.2.3 Administrative and Monitoring

4.8.2.3.1 Adobe Administrator

Administrator is the web-based portal for accessing a variety of configuration pages to set run-
time properties that control the way LiveCycle products operate. Administrators can access User
Management, Adobe JMX Monitor, Watched Folder configuration (installed with Watched Folder),
Process Manager and server settings (installed with LiveCycle Workflow), and administrative
configuration options for other LiveCycle products.

Adobe User Management allows administrators to maintain a database for all users and groups,
synchronized with one or more third-party user directories. User Management provides
authorization and user management for LiveCycle products.

4.8.3 Key Concepts, Features and Capabilities

4.8.3.1 Form Types

Form types used by the Adobe forms solution include the following.
e Interactive Forms

An interactive form contains one or more fields for collecting information interactively from a
user. An interactive form design produces a form that can be filled online or (in the case of
PDF forms) offline. Users can open the form in Acrobat, Adobe Reader, or an HTML browser
and enter information into the form’s fields. An interactive form can include buttons or
commands for common tasks, such as saving data to a file or printing. It can also include
drop-down lists, calculations, and validations.

Note: An interactive form can be dynamic or static.
e Non-interactive Forms

A non-interactive form does not respond to user interaction. This form type is often a PDF
form that is downloaded by a user, printed, and filled manually. A non-interactive dynamic
form can be prepopulated with data, and then made available to the users. For example,
billing statements are an example of a non-interactive form.

Note: A non-interactive form can be dynamic or static.
e Dynamic Forms

A dynamic form has a dynamic layout that changes based on data pre-population or through
user interaction. A dynamic form may be interactive or non-interactive. A non-interactive
dynamic form is prepopulated with data, then made available to a user without interactive
features. An interactive dynamic form may or may not be prepopulated with data, but
contains interactive fields or other interactive features that enables a user to interact with it.

A dynamic form design specifies a set of layout, presentation, and data capture rules,
including the ability to calculate values based on user input. The rules are applied when a
user enters data into the form or when a server merges data into a form. Dynamic forms are
usually rendered by LiveCycle Forms or Acrobat 7.0 and Adobe Reader 7.0. Dynamic forms
are particularly useful when displaying an undetermined amount of data to users. A fixed
layout or number of pages for the form does not need to be predetermined, as is required by
a static form. When rendered as a PDF form, intelligent page breaks are generated.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 124
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Two types of dynamic forms exist: server-side and client-side dynamic forms. Both server-
side and client-side dynamic forms are based on form designs that are created in LiveCycle
Designer.

- Server-Side Dynamic Forms

A server-side dynamic form can be a data-driven dynamic form; that is, the form is
populated with data during rendering. The amount of data determines the form’s
layout. Multiple data value instances can be provided for a given field, causing the
field to dynamically replicate so that each data value is displayed within the form.

Fields that are dynamically added to a dynamic form are contained in structures
called subforms, which are located within the form design. An example of a server-
side dynamic form is one that is part of a client application that queries a database
and retrieves an unknown number of records. After retrieving records from a
database, the application calls the LiveCycle Forms API to merge the data into the
form. After the data is merged into the form, the application renders the form to a
user.

- Client-Side Dynamic Forms

A client-side dynamic form is typically used to collect data from end users by enabling
them to click a button (or another control) that produces a new field in which data is
entered. The new field appears on the form immediately and does not require a
round trip to the server. That is, the form is not sent to the J2EE application server
hosting LiveCycle Forms and then rendered back to the client web browser with the
new field. An example of a client-side dynamic form is one that contains fields that
enable a user to enter items to purchase and a button that enables the user to add
new fields. Each time the user clicks the button, a new subform is added to the form
(a subform can contain a set of related fields).

e Static Forms

A static form has a fixed layout that does not change regardless of how much data is
placed into the fields. A static form can be interactive, in which case a user fills the form,
or non-interactive, in which case a server may prepopulate the form with data. Any fields
left unfilled are present in the form but empty. Conversely, if there is more data than the
form can hold, the form cannot expand to accommodate the excess data.

In the case of an interactive form, the end user cannot enter extra information beyond
what the form fields can hold. Similarly, excess data merged by LiveCycle Forms
overruns the area bounded by the object and the excess data is not displayed. As a
result, when creating a static form, form authors position and size the objects in such a
way that the objects can accommodate the largest expected set of data.

Static PDF forms are created by LiveCycle Designer when a form design is saved as a
PDF file, or they can be rendered on the server by passing an XDP file to LiveCycle
Forms. A static form can be generated from a dynamic form design, but once rendered
as PDF, the background is locked. Static forms are easily cacheable on the server, so
are quickly accessed when requested by a user.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 125
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.9 Reporting

49.1 Introduction

Portal Services

Tivoli

Crystal
Woriis

Reports
Developer

%

Report
Tivoli Data Developer

:}‘/ ITCAM for AD \

Universes

BO Universe
Designer

Reports
Warehouse

EP)
—or— \(Tivoli Enterprise
M Wonioring |
) mEvs))
Reporting
Admin

) (Gaching)

9
@

Central
Mgmt
Console

Business-
Objects
Enterprise

Central
Config
Manager

Oracle

oLTP
Database

Reporting
Database

‘WebSphere
Data Stage

Browser
Client

erver

Mobile Mobile
B Server
dentity) ®

N\ /) =
Jalg Client ‘ Minder | = 3 o)
Mobile L (SiteMingen) Server |2
W ; : o
m < A\) Rule Set ‘ (service)

.| Integration [_
7| server

\' IMs \

A (capture N

Low-Volume FileNe! Tmage
Scan Station DB

Figure 4.9-1: Reporting Services Context

The PA UCMS Reporting component is built around the understanding of the value of reporting,
its accuracy, its presentation, delivery and timeliness. It provides to DLI:

¢ Improved business workflow by allowing current staff to refocus efforts from report
generation/validation efforts to performance increases and customer satisfaction

¢ More consistent analysis and reporting through an integrated reporting solution using
consistent tools from a single, integrated reporting database

¢ Reduced dependency on paper and manual processes by re-evaluating current distribution
and archival methods concerning reports

The SAP Business Objects platform of products are utilized as the foundation of the UCMS
reporting solution.

The following sections describe the components and key features of the UCMS Reporting
architecture.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 126
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.9.2 Component Overview

Reporting Services }
@ Crystal
0 Reports
Report Developer
Devaloper BO Universe
Designer
@ Central
O Mgmt
Console Business-
Reporting Objects
Admin Central Enterprise
Config
Man ager
N

Reporting
Database

Figure 4.9-2: Reporting Services Components

By using the tools from SAP BusinessObjects, an integrated business intelligence environment is
formed:

Reporting enables accessing, formatting and delivering operational and management data.
Crystal Reports, a DLI OIT standard for pre-defined reports, provides this capability.

Ad hoc query allows end users to interact with business information and answer ad hoc
guestions with minimal knowledge of the underlying data sources and structures. Web
Intelligence, a thin-client tool with functionality similar to the traditional BusinessObjects
client, provides these capabilities.

Statistical analysis helps analysts and managers track and analyze key business metrics.
Web Intelligence, a thin-client tool with functionality similar to the traditional BusinessObjects
client, provides these capabilities.

A delivery framework provides secure, integrated access to viewing and development
facilities. Users enter into the report/analysis environment through a unified interface and
security is integrated with the proposed security architecture of the UCMS system. This is
built on top of BusinessObjects products for enterprise enablement and integration.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 127
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

UCMS Reporting Database

Best practices for reporting, statistical analysis and ad-hoc query dictate that these types of
activities should execute against a dedicated reporting database. This improves the performance
of the online database by relieving it of the reporting workload, and it insulates the online
database from the potential for “run-away” queries. It also allows for the use of data structures in
the reporting database that are optimized for complex queries and analysis. For the UCMS
project, a separate reporting database is utilized. Please refer to Chapter 8, Data Architecture for
more information regarding the reporting database.

49.2.1 Run-Time

This section describes the run-time components of the UCMS Reporting architecture.

4.9.2.1.1 BusinessObjects Enterprise

BusinessObijects is the Business Intelligence (BI) platform from Business Objects and combines
the underlying platform services from Crystal Enterprise, and the Business Objects semantic
layer. It provides the complete Bl platform for specialized end-user tools including Crystal
Reports and Web Intelligence. In addition, BusinessObjects Enterprise provides the Bl platform
for performance management applications.

BusinessObijects is a multi-tier system:
e The Client Tier

e The Application Tier

e The Intelligence Tier

e The Processing Tier

e The Data Tier

The following diagram illustrates how each of the components fits within the multi-tier system.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 128
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Client Tier N
Browser Packaged Apps
G Management Caaly Central Configuration Manager
InfoView
- /
e Application Tier N
Gava Web Component AdapteD
- /
e Intelligence Tier
Gl File Repositor
Management Cache Server p y Event Server
Servers
Server
\
e Processing Tier N
Report Job Program Job Yl\.IEb Y:.Ieb
CS—— Server Intelligence Intelligence
Job Server Report Server
A Rﬁgggon Destination List of Values EErE SR
PP Job Server Job Server 9
Server
o /
e Data Tier
C Oracle Reporting DB]
\

Figure 4.9-3: BusinessObjects Tiers utilized for PA UCMS

Client Tier

The client tier is the only part of the BusinessObjects system that administrators and end users
interact with directly. This tier is made up of the applications that enable users to administer,
publish, and view reports and other objects.

Central Management Console

The Central Management Console (CMC) provides the ability to perform user management tasks
such as setting up authentication and adding users and groups. It also provides the ability to
publish, organize, and set security levels for all of the content.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 129
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

InfoView

BusinessObjects comes with InfoView, a web-based interface that users access to view, export,
print, schedule and track published reports. InfoView is the main user interface for working with
reports.

The web client (InfoView) makes a request to the web server, which forwards the user request
directly to an application server (on the application tier) where the request is processed by
components built on the Software Development Kit (SDK) — either Java or .NET.

Central Configuration Manager

The CCM is a server-management tool that provides the ability to configure each of the server
components. This tool can start, stop, enable, and disable servers. Advanced server settings can
be configured.

Application Tier

The application tier hosts the server-side components that are needed to process requests from
the client tier as well as the components that are needed to communicate these requests to the
appropriate server in the intelligence tier.

Web Component Adapter

BusinessObijects provides a Java-based web application, the WCA, which allows a web
application server to run Enterprise XI applications and to host the CMC. The web server
communicates directly with the web application server that hosts the SDK. The WCA runs on the
web application server and provides all services that are not directly supported by the SDK. The
web server passes requests directly to the web application server, which then forwards the
requests on to the WCA. The WCA supports the CMC and OLAP Intelligence document viewing
and interaction. For the PA UCMS, the WCA is deployed to a server running WebSphere
Application Server.

Intelligence Tier

The Intelligence tier manages the Enterprise XI system. It maintains all of the security
information, sends requests to the appropriate servers, manages audit information, and stores
report instances. In BusinessObjects, the term “server” refers to a component of
BusinessObijects rather than a physical server.

The Intelligence tier of Enterprise Xl consists of five servers:

e Central Management Server (CMS) — Maintains a database of information to manage the
Enterprise XI Framework. Data stored includes information about users and groups, security
levels, content and servers.

e Cache Server — Handles all report viewing requests

e |nput File Repository Server (FRS) — Input FRS manages all of the report objects and
program objects that have been published to the system by administrators or users.

e Output File Repository Server (FRS) — The Output FRS stores and manages all of the report
and program instances generated by the Report Job Server or Web Intelligence Report
Server.

e Event Server — Manages file-based events.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 130
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Processing Tier

The Processing tier accesses the data and generates the reports. The Processing tier consists of
eight servers:

e Report Job Server — Processes schedule reports and generates report instances (versions of
report objects that contain saved data)

e Program Job Server — Processes scheduled program objects such as Java programs as
requested by the CMS.

e Web Intelligence Job Server — Processes scheduling requests received from the CMS for
Web Intelligence documents. This server is explained in more detail in the Web Intelligence
section to follow.

o Web Intelligence Report Server — Provides core Web Intelligence display and interaction for
end-user query and analysis. This server is explained in more detail in the Web Intelligence
section to follow.

o Report Application Server (RAS) — Process reports that users view with the Advanced
DHTML Viewer.

o Destination Job Server — Processes requests that it receives from the CMS and sends the
requested objects or instances to the specified destination. The Destination Job Server can
send objects and instances to destinations inside the Enterprise Xl system, a user’s inbox or
by sending a file to an external email address.

o List Of Values Job Server (LOV) — Supports the scheduling of predefined LOV or prompts.
This is useful in cases where the cascading prompt levels do not change regularly such as for
country, state and city.

e Page Server — Responds to page requests from the Cache Server by processing reports and
generating Encapsulating Page Format (EPF) files.

Data Tier

The data tier is made up of the databases that contain the data used in the reports.

4.9.2.2 Design-Time

This section describes the design-time components of the UCMS Reporting architecture.

4.9.2.2.1 Crystal Reports Developer

Crystal Reports Developer is used to create static reports for the UCMS. With Crystal Reports,
report designers can create many different report types, including: replicas of existing reports
and forms, graphical summary reports, cross tabs and Top N or Bottom N reports. Crystal
Reports provide UCMS and DLI report designers with a rich formula language and set of layout
controls to allow extensive control over data manipulation and report design.

Designers can define navigation paths through reports, allowing report users to drill down or
explore a set of related UC reports. Users can also sort and filter information, refresh reports,
print reports and embed live report data in Microsoft Office documents.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 131
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.9.2.2.2 Universe Designer

Business Objects Designer is a software tool that facilitates the creation of Universes for Web
Intelligence Users. A universe is a file that contains the following:

e Connection parameters for one or more databases

e SQL structures called objects that map actual SQL structures in the database such as
columns, tables, and database functions. Objects are grouped into classes and are both
visible to Web Intelligence users.

e A schema of the tables and joins used in the database. Objects are built from the database
structures that are included in the schema. The schema is only available to Designer users,
i.e., it is not visible to Web Intelligence users.

Web Intelligence users connect to a universe, and run queries against a database. They can do
data analysis and create reports using the objects in a universe, without seeing, or having to
know anything about, the underlying data structures in the database.

4.9.2.3 Administrative and Monitoring

The regular administrative tasks associated with BusinessObjects Enterprise can be roughly
divided into three major categories: user management, content management, and server
management. Typically, the following applications are used to manage BusinessObjects
Enterprise:

e Central Management Console (CMC) — This web application is the administrative tool
provided for managing a BusinessObjects Enterprise system. It offers a single interface
through which almost every task related to user management, content management, and
server management can be performed.

e Central Configuration Manager (CCM) — This server administration tool is used to manage
local and remote servers in the BusinessObjects installation.

o Publishing Wizard — This application allows for the publishing of reporting content to
BusinessObjects Enterprise quickly. Numerous options on each report can be specified.
Although this application runs only on Windows, it can be used to publish reports to
BusinessObjects Enterprise servers that are running on Windows or on UNIX.

While monitoring of events occurs using the CMC, critical alerts can be forwarded to Tivoli
Omnibus for review and possible follow-up, e.g., creation of DLI ServiceNow Ticket. Please refer
to Section 8.0, Systems Management Architecture, for more information.

4.9.3 Key Concepts, Features and Capabilities

The two main activities that users would perform with regard to reports are report viewing or
report generation. Report viewing is where the user would log into the system to
view/print/extract report information for previously-run reports or ad hoc queries.

4.9.3.1 Report Scheduling

While many reports are generated in batch mode, users can schedule reports on an as-needed
basis. Users would do this using the same interface as they would for report viewing. The
following figure depicts the high-level steps of report generation.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 132
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

[T Tovaee P TRt a Fomew o (et | [TRLTorsgaomee Apes S ves (W0 s ADD Sevves. | [TRTCRAT1A (TR Seevec: Con i W Wit Stswes | ["ETrepon | 205 Sesww et Job evven | [(RIVGUt RS Got i | [XToumk s cuioat s | [(Tisehg sooox g o8- |
T 0w bkava ! T 1 | 1 | |
l “ebiarm 1 l l I I
| | | | [
I o] I I I I |
| {User Has Rignts to Sct aReoort] 1 eredo ket | : | | | |
L1 mhach impont
| 11 getieot Tamcists | | [
| TR “I | I
| 112 getRedt Terrvlate | |
| - 1 L1 oetfmondes ; 4
| | e |
| PERRARCYRES | XI‘WWWJ '_________"u
| 11 Tﬂim:anmu | | |
I [I I I
l IR ¥4 WIDMA I I '
| L1, smeleport | I
| | |
| 118 st |
| 1,18 1wt ctian '---__—_| ————— J'J |
| | | [
| I | |
| . et | | |
! o e S R el ! | I
I aczin | | | |
| ¢ —— e __ | | | | I
| | I I | |
I I I I I |
| | I I | [
| i t t t t
| aeedhwet B | | | | |
~ T | | | | |
| | | | | | |
| | | | I I |
I I I I I I |
Figure 4.9-4: User Scheduling a Report
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 133

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Steps in Scheduling a Report:

1. The InfoView portlet sends the schedule request in a URL through the web server to the web
application server.

2. WebSphere interprets the request and the values sent, and determines if the request is a
schedule request. The web application server sends the schedule time, database logon
values, parameter values, destination, and format to the specified Central Management
Server (CMS).

3. The CMS ensures that the user has rights to schedule the object. If the user has sufficient
rights, the CMS adds a new record to the System database. The CMS also adds the instance
to its list of pending schedules.

4. The CMS checks its pending schedule list every 15 seconds. When the CMS finds a report
that is ready to be scheduled, the CMS evaluates whether there is an available Report Job
Server. The CMS sends the schedule request along with the report location, database logon,
parameter, format, and destination information to the Report Job Server.

5. The Report Job Server requests the report from the Input File Repository Server (FRS).
6. The Input FRS streams the report to the Report Job Server.

7. The Report Job Server opens the report and connects to the database to query for the report
data.

8. The database returns the report data to the Report Job Server. The Report Job Server then
processes the report.

9. Once the report is processed, the Report Job Server saves the report to the Output FRS.

10. The Report Job Server reports back to the CMS to let the CMS know that the report has been
processed successfully.

11. The CMS updates the instance record in the system database to change the instance status
to Success.

4.9.3.2 Web Intelligence Query Scheduling

Users are able to schedule ad hoc queries on an as-needed basis. The following figure depicts
the high-level steps of Web Intelligence query generation

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 134
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Lk Lo

14 vmooosh comet - 1 | |

-
142 e wa
........

-
1 mSwamasat

Figure 4.9-5: User Scheduling a Web Intelligence Query/Report

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 135
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Steps in Scheduling a Web Intelligence Query/Report:

1.

10.

11.

12.

13.

14.

The InfoView portlet sends the schedule request in a URL through the web server to the web
application server.

WebSphere interprets the request and the values sent, and determines if the request is a
schedule request. The web application server sends the schedule time, database logon
values, parameter values, destination, and format to the specified Central Management
Server (CMS).

The CMS ensures that the user has rights to schedule the object. If the user has sufficient
rights, the CMS adds a new record to the System database. The CMS also adds the instance
to its list of pending schedules.

The CMS checks its pending schedule list every 15 seconds. When the CMS finds a report
that is ready to be scheduled, the CMS evaluates whether there is an available Report Job
Server. The CMS sends the schedule request along with the report location, database logon,
parameter, format, and destination information to the Web Intelligence Job Server.

The Web Intelligence Job Server requests the report be opened from the Web Intelligence
Report Server.

The Web Intelligence Report Server requests the report from the Input File Repository Server
(FRS).

The Input FRS streams the report to the Web Intelligence Report Server.

The Web Intelligence Report Engine, a sub-component of the Web Intelligence Report Server
opens the report in memory and generates the SQL from the universe on which the report is
based.

The Web Intelligence Report Server connects to the database to run the query.

The database returns the query data to the Web Intelligence Report Job Server. The query
data is then passed to the Web Intelligence Report Engine to process the report.

Once the report is processed, the Web Intelligence Report Server saves the report to the
Output FRS.

The Web Intelligence Report Server notifies the Web Intelligence Job Server that the
instance was a success.

The Web Intelligence Job Server reports back to the CMS to let the CMS know that the report
has been processed successfully.

The CMS updates the instance record in the system database to change the instance status
to Success.

4.9.3.3 Report Viewing

Users are able to view reports through the InfoView portlet. Report distribution of Crystal report
(static) or Web Intelligence reports/queries (ad hoc) is performed by BusinessObjects Enterprise.
The following figure depicts the components utilized for report viewing.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 136
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

£ Verw Porthet: Infoliew Portiet L webfSphere 200 Server: Webiohern App Gerpe £l centrd Mot Server Cantrd Momt Server $] cache Server Cache Sever 2 Iroge Serve Page Server £l outout FRSOutput PG

L shwdefaport
L1 gt

LU
L.2: inerHeRIghts?

1 grtRepantPyp
[utser Has ighes) N

[Pagn cows rot west] L generatePagm
11 et sty =

| LTI

1.2 e tinntan=

1.3 gepen stePoge

GRbLaTy 1)::‘:‘,:-Pv)-
1 2 QeneratePape
2: QARG bye
SNTLATY
2w b b agant
Figure 4.9-6: Viewing a Report
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 137

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Steps in Viewing a Report:

1. The InfoView portlet sends a view report request in a URL through the web server to the web
application server.

2. WebSphere Application Server interprets the requested page and the values sent in the URL
request and determines if it is a request to view the first page of the selected report instance.
The web application server sends a request to the CMS to ensure that the user has rights to
view the instance.

3. The CMS checks the system database to verify the user rights.

4. The CMS sends a response to WebSphere to confirm the user has sufficient rights to view
the instance.

5. WebSphere sends a request to the Cache Server requesting the first page of the report
instance.

6. The Cache Server checks to see if the page already exists. If the page does exist, the Cache
Server can return the page to WebSphere. If the page does not exist, the Cache Server
sends a request for the Page Server to generate the page.

7. The Page Server requests the report instance from the Output FRS.

8. The Output FRS streams a copy of the instance to the Page Server. The Page Server opens
the report in its memory, finds the data and generates pages.

9. The Page Server sends the report instance page to the Cache Server. The Cache Server
stores a copy of the report instance page in its cache directory.

10. The Page Server sends the report instance page to WebSphere.
11. WebSphere sends the report instance page back to InfoView to be rendered in the portal.

4.9.3.4 Security

The security integration between the Portal and BusinessObjects Enterprise relies on
authentication and authorization control mechanisms as well as network and operating system
controls. The authentication and authorization are performed by Siteminder when the user
initially enters the Portals. Access to BusinessObjects are controlled at the Portlet level based
upon the user’s SiteMinder role.

Users invoke BusinessObjects from the Portal and the user’s role determines what the user is
authorized to do. The user ids and roles are mapped between BusinessObjects and Siteminder
based upon detailed specifications to be determined during micro-design of the solution.

The network and host infrastructure supporting the applications are controlled through access
control lists and operating system controls to limit access only to authorized objects.

4.9.3.5 Scalability

The BusinessObjects Enterprise architecture is scalable in that it allows for a multitude of server
configurations, ranging from stand-alone, single-machine environments, to large-scale
deployments supporting global organizations. The flexibility offered by the product’s architecture
allows a system to be set up that suits the current reporting requirements, without limiting the
possibilities for future growth and expansion.

Referring back to Figure 4.9-3 the components that make up each of these tiers can be installed
on one machine, or spread across many. Each tier is a layer of the system that is responsible for
arole in the overall architecture. There are many servers involved in this architecture. Some of
these servers are only responsible for doing work, others only responsible for managing the
servers doing the work.

The services can be vertically scaled to take full advantage of the hardware that they are running
on, and they can be horizontally scaled to take advantage of multiple computers over a network

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 138
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

environment. This means that the services can all run on the same machine, or they can run on
separate machines. The same service can also run in multiple instances on a single machine.

For example, the CMS and the Event Server can run on one machine, while the Page Server
runs on a separate machine (horizontal scaling). If the Page Server is running on a multi-
processor computer, then multiple Page Servers can be run on it (vertical scaling). The
important thing to understand is that even though these are called servers, they are actually
services and daemons that do not need to run on separate computers. For the UCMS project, all
of the servers except for the Web Intelligence Job and Report servers are installed on one server.
The Web Intelligence Job and Report servers are installed on a separate server.

4.10 Wage Functionality Component Model

4.10.1 Introduction

The Component Model describes and documents the entire hierarchy of components in terms of
their responsibilities, their interfaces, their (static) relationships, and the way they collaborate to
deliver required functionality. It is used to describe complex solutions and to ensure that different
teams can work efficiently with a reuse and global design approach.

A Component Model is used to bridge the gap between requirements and the solution by
ensuring that detailed specifications need not be made immediately available but can instead be
elaborated over a period of time. It also mandates the main design principles and overall
structure. This is achieved by defining smaller problem scopes that can be handed to different
teams for resolution while encouraging reuse across teams.

Each Component in the Component Model is an independent part of the system. It is identified
by its responsibilities and eventually by the interface(s) it offers that are collectively used to
achieve the system behavior. Components can be decomposed into smaller components or
composed into larger components. A Component is a very general concept and is not restricted
to any particular technology. It is an encapsulated part of a software system with well-defined
interfaces through which access to its services are provided.

This release has a number of application and technical components used to deliver the
functionality. The diagrams in the model focus primarily on the application components and
which technical components are used to assist in achieving the desired system behavior.

The “Portal User Interfaces” component provides the user interfaces to work with the wage
records and to work with human tasks that are being managed with workflow. The “Employer
Quarterly Reports Services” component provides the functionality to generate the UC-2 and UC-
2A Quarterly Reports that are printed and mailed to employers. The “Wage and Tax Intake
Services” component provides the functionality to process and edit Wage and Tax records
received on the UC-2 and UC-2A. This component uses two other components, the “Tax
Remittance Processing Services” component and the “Wage Record Services” component.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 139
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.10.2 Component Overview

The following diagram is a Component Overview diagram for the Wage and Tax Functionality

Tax System
Remittance Processing
uc UC Employer
F‘mwm Experence
Ledger Ledger
3 + I
Prod UC2
UC2 inquiry Payments and
Returns.
h
Daily Deposit
Bank i
S (Checks. MO
EFT)
e e B | =7 S |
thru ESB.
i thru

Wage Record System
Post Valid
Records
Processing Tasks <
Wage Record
Master Data
UC2 and UC2A
Edits
? ‘Wage Record Inquiry/
Update Services
Electronic Tax and
Wage Data

[image Retrieval |
Services

lmaoeswraoe

|:] R1/R2 Wage and Tax System
[] ro common Modules/Tech Services
D Legacy Systems

B e Ry

OCR/
ICR Keyed
input

Paper Quarterly
Tax and Wage
Reports

u UC2A

Figure 4.10-1: Component Overview — Wage and Tax

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

140

4.10.3 Component Relationships

The Component Relationship Diagram is used to depict the static component relationships and
dependencies among components. It is represented by a variation of the UML Class Diagram.
The diagram below is the main overview Component Relationship Diagram. It contains the

primary components for Wage Functionality.

“Components
= | Document Management Services

“COMPOonent:
= JPortallserlnterfaces

0 WorlflowedTaskUI

WLEEs @ clisplayTaskList ()
@ clisplayTaskDetails ()
“COMmponent s @ workOnTask ()
= |Worlflow Services T @ completeTask ()
@ escalateTask ()
£ WageRecorduUl
H5E @ searchWages ()
«Components @ viewWages [)
= |Partal Services @ updateWages |)
@ submitWaoges ()
“LISEN
aCOmponents
= | TaxtndRemittanceProcessingServices “component»
= | WageRecordServices
TaxAncdRemittancelnguir
06 inquire {] Ay £ WageRecordInguiry
0 TaxtndremittancePosting @ incire () .
® postPayment [) £ WageRecordPosting
@ postReturn () ® updateWage ()
@ postWage ()
G |GE LIS
«Components
= |WagelndTaxIntaleServices
“COmpongnts:
= |Business Rules Services
= “Lise 9 InitialWageandTaxIntale
@ processUC2withUc2a ()
@ processUCZ ()
@ processUIC2A ()
“COMmponents: “COMPOonents:

= | Caorrespondence Services = |EmployerReportsServices

g

€ EmployerQuarterlyReports
@ generatelC2andlIC24 ()

Figure 4.10-2: Component Relationship Diagram

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 141
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.10.3.1Ul Component Diagram

The diagram below shows the components used specifically for the creation of the user interface
functionality for this release. It contains components and interfaces provided by the
PortalUserInterfaces component.

«component» «component» «component»
= |Document Management Services = |Portal Services = |Worlflow Services
«LIse”
“LISen
«use»
«component»
= |PortalUserInterfaces
«component» -
i =]WageRecordServices | € WorlflowedTaskUI

@ displayTaskdList ()

' WageRecordInguir
O Wag o @ displayTaskDetails ()

@ inquire () ' ‘ «Liser @ workOnTasl: ()
€ WageRecordPosting ® completeTask ()
@ updateWage () ® escalateTask ()
@ postWage () € WageRecordUl

@ searchWages ()
@ viewWages ()

@ updateWages ()
@ submitWages ()

«offers» «offers»
«interface» «interface»
© WorlflowedTaskUI € WageRecordUl
@ dlisplayTaskList () @ searchWages ()
@ displayTaskDetails () @ viewWages ()
@ workOnTask () @ updateWages ()
@ completeTask () @ submitWages ()

@ escalateTasl: ()

Figure 4.10-3: Ul Component Diagram

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 142
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.10.3.2Intake Component Diagram

The diagram below shows the components used to manage the intake processing of UC-2 and
UC-2A employer reports. It contains components and interfaces provided by the components.

«interface»

| «component»
«component» = | WageAndTaxIntaleServices €3 InitialWageAndTaxIntake

= |Business Rules Services
| @ processUC2withUC24 ()
@ processUc2 ()
@ processUC2A ()

-auses @ InitialWageAndTaxIntale
@ processUC2withUC2A ()
@ processUC2 ()
@ processUC2A ()

«Lisen
wuge»
«component»
£] WageRecordServices
«component»
=] TaxAndRemittanceProcessingServices
R 9 € WageRecordInguiry
€ TaxAndRemittancelnquiry ' @ inquire ()
@ inquire () € WageRecordPosting
@ TaxAndRemittancePosting @ upcateWage ()
® postPayment () @ postWage ()
® postReturn ()
«offers»
«interface» «offers»
«offers» €9 WageRecordInquiry
«offers» .)
«interface» @ inquire () AR
€9 WageRecordPosting

€9 TaxAndRemittancelnquiry
| ® updateWage ()

@ inquire () e
€ TaxAndRemittancePosting ® postWaage ()

@ postPayment ()
® |3ostRetp|}'n ()

Figure 4.10-4: Intake Component Diagram

143

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.10.3.3Form Component Diagram

The diagram below shows the components used to prepare pre-populated UC-2 and UC-2A

forms for printing and mailing. It contains components and interfaces provided by the

components.

Figure 4.10-5: Form Component Diagram

“components»
= | Correspondence Services

L |SE R

“Components
= |EmployerReportsServices

£ EmployerQuarterlyReports
@ generatelC2andUC2A ()

aofferss

«interfaces
3 EmployerQuarterlyReports

@ generatelC2andlUC24 ()

4.10.4 Component Descriptions

Each component is assigned an identifier, given a name and described to ensure a clear

understanding of its responsibilities. Component IDs starting with SYS are covered in detail in the
System Component Model section. Wage Functionality focuses its attention on Component IDs

starting with COMP. Release 2 built upon these components to operationalize the solution for

wage and tax functions. Sections following describe the relationships between these components
the interactions between them used to satisfy required business functionality.

Component Name Description Technology
ID
SYS-001 Business Rules This component provides the functionality to Corticon Rules
Services implement externalized business rules. Engine
SYS-002 Correspondence This component provides the functionality to Adobe Livecycle
Services manage correspondence activities. Forms
SYS-003 Document This component provides the functionality to FileNet
Management store and retrieve images.
Services
SYS-004 Integration This component provides integration, routing, webMethods
Services / transformation and mediation of services and
Enterprise Service | service integration.
Bus

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

144

Component
ID

Description

Technology

SYS-005 Portal Services This component provides a framework to Portal
manage portlets and a portal community for
UCMS activities.
SYS-006 Reporting This component provides a framework to Business Objects
Services create, manage and view reports. Enterprise
SYS-007 Workflow Services | This component provides human task WebSphere
management, business process execution and Process Server
business state machines
COMP-001 Portal User This component provides the user interfaces Portal
Interfaces used to work with the wage records and to work
with the human tasks that are being manage by
workflow.
COMP-002 Wage And Tax This component provides intake processing Business Process
Intake Services and editing of Wage and Tax records received Execution
on UC-2 and UC-2A reports Language (BPEL)
COMP-003 Wage Record This component provides services to retrieve, J2EE-based
Services search for, update and post wage records. Services
COMP-004 Tax And This component provides services to retrieve J2EE-based
Remittance and post tax and remittances Services
Processing
Services
COMP-005 Employer Reports | This component provides services to generate Correspondence
Services reports mailed to employers Engine

4.10.5 Component Interaction
Component Interaction Diagrams are used to illustrate how components collaborate to achieve

system functionality. It is represented by a variation of the UML Collaboration or Sequence
Diagram.

4.10.5.1Intake Component Interaction Diagram

The following diagrams show the interaction of components used to provide the intake processing
and editing of UC-2 and UC-2A forms.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

145

4.10.5.1.1UC-2 Processing

4 Submit UC2

=] Worlkflow Services = |'ESB Services = |:Document Management Services

1 submitlIcz
1.1: processUC2ImageRecords

1.1.1: processLIC2

1.1.1.1: startProcessCZBusinessProcess

wreturns
1.1.1.2: startProcessUC2BusinessProcess

“return:
1.1.2: processUCz2

wreture
1.2: processUC2ImageRecords

sletLr
2 submitlICz

= | 'Worlkflow Services

Process UC2

Figure 4.10-6: Submit UC-2 for Processing

Process L2
LT iWarkflow S 1 iWapeandY mintd wSevioes £) ITanAre Rerrt Ly v sriry ey me
1 proces 2
L1 rgae
rutume
1.2 raee
1.3: busrees rubo edits
retuy
1.4 bunsieens (b exchiy
1! postRetuar
[if r=tuan) st
21 postRagian
=]
[panirsnt) 1 postPamied
SELT
2 potPaneet
RO
2! processiica

=) :Busives Rubss Services

Figure 4.10-7: UC-2 Processing

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

146

4.10.5.1.2UC-2A Processing

e Submit LICZA

= |wWorlflow Services = |:ESB Services = |:Document Management Services

1: submitlIC2A
1.1 processUC2AImageRecords

1.1.1; processUC2A

aleturre

areturme:
1.1.2; processUC2A

areturre
1.2 processUC2AImageRecords

areturms
21 subimitLIC2A

1.1.1.1: startProcessUIC2ABUsinessProcess

1.1.1.2: startProcesslCZABUsinessProcess

= |:Worlflow Services

Process LUC2A

Figure 4.10-8: Submit UC-2A for Processing

Process 24

L iWarkflow Services £ Wageand T adnta whee vioes L WogesSacordSe v
4 proceRd K20
L1 ngew
ety
1.2 pamw

1.3: bumnes nie adts
tutme
1.4: busnas iua adt
L5 postWage
(el
156! postWiag=

wretLsT
20 process CIA

2 TaAnRwrttarcey ocenySermce

L] Bunrvess Rukes Sesvices

Figure 4.10-9: UC-2A Processing

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

147

4.10.5.2Employer Reports Component Interaction Diagram

The following diagram shows the interaction of components used to provide the printing and
mailing of Employer Quarterly Reports, UC-2 and UC-2A forms.

DS LC248 Quiaterly Report Fromms
Feport Trgom % B Pkt Sarvioee Lol fow Servioes L EmphyaRepontsSeviees 1| E5B Serwen £ Comrepondenoe Servies
10 STt Sy s QU L A TS o B ransssPy oneas
1.1: grerws e X 2 C20
531 Dy e eteamne snpbopses b creats rapcsts for
1ubn
101,20 Dosinsss vule St S rplonss 1o Craats renonty Ao
L12 oreate and coute UCZUC2A for smplovers
1131 crepbe and route UC2ZJUCIA Sof emplopess
wpeip e
1142 cmates aned route UC2IOC2A for srphopess

At

ALY L4 crmate o) route UCZIUC2A fof sargloyes

1.2 g el 20wl 20

st
L staterst ate S oy SrOua ta W R spor SSusinsasiy oosss

Figure 4.10-10: Employer Reports Component Interaction Diagram

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 148
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.10.5.3Wage Record User Interface Component Interaction Diagram

The following diagrams show the interaction of components used to provide a user interface to

search, view, update, and submit wages.

4 Wage Record

1: view wage record portlet

areturms
21 view wage record portlet

3: searchWages

«return»
4; searchWages

5 viewWages

aratur»
6 viewWages

7' updateWWages

areturn»
8: update\WWages

3: submityWages

areturs
10: submitVWages

'T' Actorl =]:Portal Services

= |:PortalUserlnterfaces =]:ESB Services = |:WageRecordServices

1.1: display wage record portlet

returm

1.2: display wage record portlet

3.1: searchWageRecord

2.1.1: inquire

o ety
“return» 3.1.2¢ inquire

3.2: searchWageRecord
5.1: getWageRecord

5.1.1; inquire

o “returne
«returny 5.1.2¢ inquire

5.2 getWageRecord

7.1: upclateWageRecord
7.1.1; updateWage
«reture

«returm» 7.1.2: updateWage
7.2: upclateWageRecord

9.1 submitNew\WageRecolcd
9,1.1; postWage
_— «returme
«raturmn» 9,1.2; postWage
9.2: submithewWageRecdrdl

Figure 4.10-11: Wage Record Interface Component Interaction Diagram

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016

Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

149

4.10.5.4Workflow Managed Task User Interface Component Interaction
Diagram

The following diagrams show the interaction of components used to provide a user interface to
get workflowed human tasks and complete or escalate the task.

o Workflowed Task: LI

i¥ :Actorl = |:Portal Services = |:PortalUserinterfaces = |:ESB Services = | 'Waorlflow Services

1: view tasl: mgt portlet
1.1: display tasl: mgt portlet

st
1.2: display tasl: mgt portlet
areturms
2 view taslk: magt portlet

3: dlisplay TaslList)
3.1 getTaskList

3.1.1: getTaskList

wreturms

L “refurne 3.1.2: getTaskList
“returns 3.20 getTaskList
4 displayTaslList

5 displayTaskDetails
5.1: getTaskDetails

5.1.1: getTaskDetails

wreturn»

_— «refurn: 5.1.2: getTaskDetails
letumne 5.2: getTaskDetails d
&: displayTaskDetails

7 worl:OnTask:
7.1: checkOutTask

7.1.1; checkoutTask

N wreturn»

L “return:: 7.1.2: checkOutTask
“returns 7.2: checkOutTasl:

8 wiorkonTask:

9: escalateTask
9.1: escalateTasl: 9.1.1: escalateTask
araturm»

wreturms: 9,1.2: escalateTask
areturm» 9.2: escalateTaslk: — —
10 escalateTask

11: completeTask:)
11.1: completeTaslk: | 11 1 1: completeTask

L wreturn»
L “returns 11.1.2: completeTask
“returms 11.2: completeTask:
12; completeTask

Figure 4.10-12: Workflow Managed Task User Interface Component Interaction Diagram

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 150
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

4.11 Tax Component Model

4.11.1 Introduction

The Component Model for the Tax Functionality is the same as that from the Wage Functionality.
This is to be expected: Tax added operational code Tax functions, building upon the Common
and Wage release components and base functionality. It is at this point that this Blueprint begins
to separate from the detailed database development, operational and functional models, and
business processes. In particular, the business processes and associated tasks are described in
Design Packages, Detailed System Design documents, Use Cases, and supporting
documentation. The business processes and associated functionality are separated into
modules. Besides Base, Common, Department of Labor, and shared portlet modules used
across all of the functional areas, there are modules separated into groups associated with
specific Unemployment Compensation topics for:

e Accounting
e Collections
e Compliance
o Field Audits
¢ Ratings

e Receivables
o Registration
e Tax Appeals
e Wages

The documentation for the modules is gathered into Use Case and other design artifacts created
during the design of the corresponding functions. Each functional group consists of an extensive
collection of materials that can include Business Process models, operational artifacts, logical
and physical database models etc.

Some of the detailed design artifacts and Use Case documents are substantially larger than this
Blueprint. As a result, it is impractical to include them here, even as Appendices. In addition,
while the UCMS solution architecture (as described in this Blueprint) has remained relatively
consistent since the original version of the Blueprint was released in 2007, the modules and their
design artifacts have changed as the detailed design has matured and new features have been
added via design change requests.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 151
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

5.0

Data Architecture

5.1 Introduction

This section presents the high-level data and technical architecture for UCMS. The data
architecture section discusses data stores and data flows between data stores, and provides
high-level characteristics about both data flows and data stores. The technical architecture
section discusses the logical hardware and software infrastructure configuration required to
support this data environment.

Information is the lifeblood of a successful on demand business. To meet on demand information
requirements, an Enterprise Data Architecture is required to deliver seamless, consistent, timely,
and accurate data to end-to-end business processes. Within PA UCMS’s Enterprise Architecture,
associations exist between business processes, the application architecture, and data. Business
processes define the activities necessary for UCMS to conduct its internal and external business;
these processes are implemented as applications which create and manage the data as required
to run the business. This data, in turn, is used by other business processes for analysis and
orchestrating further activities. (Note: while “information” and “data” are often used
interchangeably, a distinction is recognized. Data consists of “raw” facts such as those stored
within databases; information is the business and technical knowledge derived from processing
data.)

A key focus of a Data Architecture is to extend existing core elements to an enterprise scope, and
to work more tightly with the application architecture and process communities to achieve the
following goals:

e Reduce and eliminate tower-oriented data.

e Apply atighter linkage to established data standards.

e Reduce excessive data handling.

e Integrate flexible data sourcing to support solutions' availability requirements.

e Enhance integration of business processes and data.

¢ Improve data management to reduce a significant cost element in the IT budget.

5.1.1 Key Assumptions

The design of the UCMS database assumes that two databases are implemented on two
separate database instances for ease of future upgrade and scalability. One is the UCMS Online
Transaction Processing (OLTP) and the other a Reporting/Query database.

The configuration must support the continuity of business operations for extended periods of time
without impacting the service level by switching the data centers, should a disaster strike a site.
Operation of a continuity-of-operations (COOP) site is controlled by DLI/OIT as part of overall
production management and administration.

The current data architecture incorporates numerous functional and technical specifications. As a
result, it reflects information that is obtained from specifications that are in varying degrees of
completeness, and that change over time. For those designs that are preliminary, the data
architecture is updated and finalized following the completion of (1) functional and technical
design and specifications by the business team and the Reports, Interface, Data Conversion and
(2) technical and operational requirements for audit/reconciliation and retention/restore.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 152
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The design of the data architecture assumes that a separate Reporting/Query database is
established to support retention and reporting service requirements, and additional reporting
requirements beyond those already established.

The design of the Data Architecture assumes that UCMS OLTP database is the focal point for
Online Transaction Processing (OLTP) of UCMS.

5.1.2 Key Requirements

The technical architecture must support the performance, disaster recovery, volume and
availability requirements, subject to the COOP operational responsibility described earlier. The
technical architecture must assure UCMS users that the UCMS system can handle the
processing requirements and remain viable in adverse situations such as hardware failure.

Data stores, as subject-oriented collections of data, do not, per se, satisfy requirements. Rather,
it is the lower-level structures included in a data store, such as tables and procedures that are
traced to requirements. Nevertheless, reports, interfaces, and other requirements have been
considered during the development of this document.

5.2 Data Architecture Framework

E2E (End-to-End) Data Architecture Framework

The E2E Data Architecture Framework consists of multiple tiers, as depicted in the following
figure. This is a specification framework and not all parts are within the scope of the UCMS
project. For UCMS it is used as a data reference architecture and for patterns that are used in the
design. The Business Data Architecture, consisting of the Subject Areas, Enterprise Information
Model, and the Messaging Standards, establishes the foundation of the architecture. The Data
Sharing Architecture, Logical Data Stores, and the Trusted Data Stores are built upon that
foundation and its overall guiding principles. The purpose is to develop a well-integrated
enterprise data architecture built upon standards, controlled redundancy, and maximized data
quality. In order to accomplish this task, the architecture components must be well-governed and
made accessible via the Metadata layer. In addition, the diagram below shows a Data
Warehouse (DW) which implies four key tenets including Subject Orientation, Time Variance,
Persistence and Integration, not all of which are controlled by the UCMS application.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 153
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

EZE Oata Architecture and henagement Strategy

Persistent Data Stores

G

(6] M
W E
E T
R . § A
B Logical Data Store Architecture D
A A
I Data Sharing Technologes T
C A
E Messaging Stendards

Erterprise Information Model & Dda Standards

Enterprise Subjed Area Mode

Figure 5.2-1: E2E Data Architecture and Management Strategy

Business Data Architecture

The Business Data Architecture is comprised of the Subject Areas, Enterprise Information Model,
and the Messaging Standards. It defines the business objects, processes, and data, and
establishes their inter-relationships at different abstraction levels. The combination of these tiers
enables:

e A common categorization of data objects.

e Defining data structures and their relationships.

e A common glossary of business terms.

e A foundation for describing data flows.

e An architecture for application-to-application messaging.

The Business Data Architecture provides the Data Architect with an understanding of how the
data is being (or will be) strategically used through different levels of application architecture and
data abstraction. Additionally, the Data Architect can identify possible redundant repositories and
data usage, and initiate a halt of their proliferation in the landscape. The Business Data
Architecture assists the Application and Data Architects in defining the strategic architectures for
the business.

Enterprise Subject Area Model (ESAM)

The Enterprise Subject Area Model is owned and maintained by the Enterprise Data Architecture
Team, and is used to categorize data by subject area and to assign Data Stewards who are
responsible for the completeness, definition, and quality of the data defined within the subject
area.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 154
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Enterprise Data Model (EDM)

The EDM is a high-level, conceptual data model that defines business data structures and their
inter-relationships, and represents business data needs. The EDM is managed by the Enterprise
Data Architecture Team, and multiple groups collaborate in developing and maintaining it. (Note:
EDM was formerly known as the Enterprise Information Model or EIM)

Data Sharing Technologies

Due to complexities and inter-dependencies within the UCMS environment, information flows
between applications must be identified, analyzed, and documented to ensure the accuracy and
efficiency of business applications. The criteria for specifying and managing information flows are
detailed in the Detailed Systems Design documents and includes:

e The name and type of the information flows or interfaces.
e The specific data which is shared.

¢ How the data is exchanged.

e The required timeliness of data sharing.

Adhering to these criteria aids in:

¢ Reducing business problems caused by data errors.
e Highlighting the number of applications through which the information flows.

e Highlighting the number and types of data transformations, including where redundant
transformations exist.

e Highlighting data quality issues.

Data Migration

Within the E2E Data Architecture, it is imperative to identify the systems which are responsible for
transferring data from one location to another. The controlling processes and established
schedules must be documented to ensure prerequisite compliance, capacity requirements, etc.
ETL (Extract, Transform, Load)

ETL processes are required to acquire data, ensure it is in a usable form by applications, and
deliver it to the appropriate data stores.

Logical Data Stores Architecture

A Logical Data Store is a high-level representation (or business view) of data contained within
one or more physical data stores. An understanding of the inter-relationships between data
elements and between the data and applications is required to define the Logical Data
Architecture.

Persistent Data Architecture

Trusted Data Stores Environment

Trusted Data Stores are sources which have been formally certified as such. This process is
designed to ensure quality, reliability, and security criteria are met, and in so doing, assure the
consuming applications of the data's enterprise value.

Trusted data stores occur in three implementation formats and serve differing purposes:

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 155
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

1. Transactional Data Stores

Transactional Data Stores support the Online Transaction Processing environment (OLTP), and
are usually the origination points of trusted data. These sources directly support the business
processes according to established rules. In general, these stores are regarded as Authoritative
Source Systems.

2. Operational Data Stores (ODS)

Operational Data Stores accumulate and manage transactional data supplied by operational
systems. A key facet of ODS data is its meaning or value is not changed from its origination
point(s), but it can be cleansed, enriched, and transformed as needed. Another key facet is it
doesn't contain historical data.

3. Data Warehouses & Data Marts

Data Warehouses and Data Marts are typically used by Business Intelligence and Reporting
applications for analyzing and reporting the business' status. As such, they contain historical and
derived/calculated data, and the solutions which use this data drive subsequent business
direction and activities. Data Marts are often sourced from Data Warehouses and are tailored for
more specialized analysis and reporting. The Data Warehouse Architecture section provides an
overview, and examples of trusted data stores can be seen in the Data Warehouse Target
Architecture. However, UCMS does not implement a Data Warehouse. Trusted data can be
“cascaded’, i.e., trusted sources can feed downstream repositories, which can, in turn, be
certified as trusted.

The Reporting/Query database/data mart contains historical and derived/ calculated data that
UCMS reports need. This Reporting/Query data base is sourced from the UCMS operational
database. This type of data mart it not a dimensional model. The model is built to best meet the
reporting needs and can be in 3@ normal form.

5.3 High-Level Physical Data Architecture

This section presents the UCMS High Level Physical Data Architecture, the Data Architecture
Components, software and the data stores.

The architecture shows various data stores as follows:

e OLTP

¢ Audit Database

¢ Reporting/Financial Database

e FileNet database (content management)

e ETL data store

e Data Recovery data store

The UCMS database supports real-time business transactions requiring quick response times,
the generation of a broad range of reports and queries, and the archival of large image files that,
while essential to the business, are infrequently accessed. In order to achieve the best
performance and stability the database is separated into different physical databases.

Operational Database - UCMS applications interact with the operational database, which is
optimized for response time. This database acts as the master database as the data it contains
reflects official UCMS case and financial management transactions that have potential legal or
financial import. It is implemented as a relational database.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 156
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Reporting Database - Best practices for reporting, statistical analysis and ad-hoc query dictate
that reports and ad-hoc queries should execute against a dedicated reporting database. This
protects the operational database from run-away queries and relieves it of the reporting workload.
Data structures in the reporting database are optimized for complex queries and analysis.

FileNet Data Repository - The third major data store in the UCMS Data Architecture is devoted to
the Document Management function implemented with FileNet COTS software.

The following diagram depicts the Local Data Services detail component model.

5.3.1 Data Stores

UCMS Data Stores and Their Uses

The UCMS database supports real-time business transactions requiring quick response times,
the generation of a broad range of reports and queries, and the archival of large image files that,
while essential to the business, are infrequently accessed. Attempting to execute all of these
business functions against a single data store can present performance challenges as a database
optimized for a given business function may not support the others effectively. For example,
optimizing the database for transaction speed might require limiting ad-hoc queries against the
database or creating limited, off-peak, windows during which reports may run. From a data
integrity and maintenance point of view, it is desirable to “normalize” a database, subject to
certain restrictions known as Normal Forms. Third Normal Form (3NF) is commonly used for
transactional systems such as UCMS. However, some operational situations are hampered by
use of a normalized database. Optimizing a database for reports by denormalizing the data
makes it easier to use when running queries or generating reports, but often results in slow
transaction times. To minimize these issues, the UCMS database is separated into three distinct
elements in order to meet both the functional (transactional and reporting) and performance
requirements. The following figure describes the UCMS Data Architecture.

DL! Server Farm
Disaster Recovery Site
FlloNet - -
‘Ml o UCMS Applications -
| Ous
> e
/
’
’
s’
e
/
Cantent /
P! cor Duta
Third-Party Scannng
Vendor
Figure 5.3-1: UCMS Data Architecture
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 157

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Operational Database

UCMS applications interact with the operational database, which is optimized for response
time. This database acts as the master database as the data it contains reflects official UCMS
case and financial management transactions that have potential legal or financial import. For
example, financial transactions resulting from the activities in the core UCMS application are
posted to the operational database as financial ledger entries. The operational database
supports audit trails, tracking the addition, deletion or alteration of data in order to prevent data
being altered or destroyed in an unauthorized manner. The operational database is normalized
and tuned to optimize response time.

Figure 5.3-2: Operational Database

Reporting Database

Best practices for reporting, statistical analysis and ad-hoc query dictate that reports and ad-
hoc queries should execute against a dedicated reporting database. This protects the
operational database from run-away queries and relieves it of the reporting workload. Data
structures in the reporting database are optimized for complex queries and analysis by
structuring the model with additional indexes and a model that is aligned to the reporting
requirements.

WebSphere

Figure 5.3-3: UCMS Reporting Data Architecture

The process of populating the reporting database from the operational system is commonly
referred to as Extract, Transform and Load (ETL). ETL is also used to populate the transaction
database with material from clients or other systems. IBM WebSphere DataStage supports the
collection, integration and transformation of large volumes of data with data structures ranging
from simple files to highly complex structured data sources. Developers use a top down
dataflow model of application programming and execution, which allows them to create a visual
sequential data flow. A graphical palette helps developers diagram the flow of data through

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 158
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

their environment via simple GUI-driven drag-and-drop design components such as filters,
“Joins”, and other common database operations. Developers also benefit from a versatile
scripting language, powerful debugging capabilities, and an open application programming
interface (API) for leveraging external code.

Changed data is extracted from the Transactional Data of the UCMS on a periodic basis —
usually daily. This data is then transformed, using one or more of the many pre-built DataStage
functions and routines. The actual transformations being performed are determined during
design. Finally, the transformed data is loaded into the appropriate database tables. In
addition DataStage can source data from mainframe systems, flat files and other relational
database systems.

FileNet Data Repository
The third major data store in the UCMS Data Architecture is devoted to the Document

Management function implemented with FileNet COTS software. Key to data integrity in this
domain is FileNet data management.

FileNet
Content Manager

)
- Scanned Documents
Collector ———

Figure 5.3-4: FileNet Document Data Repository

At the center of FileNet Content Manager are the repository services of the underlying Content
Engine. Multiple repositories or libraries, called object stores, can be created and managed
within a single system for storing business-related digital assets, collectively referred to as
objects. These can be centralized or distributed.

Paper UC documents scanned by third parties are archived in FileNet as image files. These
files are imported from offsite via the IBM Content Collector component. The archived files are
subsequently managed and stored by FileNet. The actual image files are stored on the SAN
and the metadata and index data are stored in an Oracle database in a FileNet schema.

Field Audit Data Repository

The fourth major data store in the UCMS Data Architecture is related to the field audit
capabilities. A laptop audit program with its own database containing the subset of audit cases
representing the auditor’s assigned cases was deployed to production but is not currently being
used. These will be synchronized with the main UCMS Oracle database using proven data
replication technology from Oracle. Field Audit functions and data are not currently in use.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 159
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Note that while Field Audit code has been created, it is not currently (2014) used. When DLl is
ready to activate Field Audit functionality and mobile devices, the Field Audit Data Repository
synchronization operations, including status of all required server-side software and verified
operation between the UCMS servers and mobile devices, should be reviewed.

i

Presentation Tier

Windows
Java Virtual Machine

Application Tier

WobSphera Application Sarver
Java Virtual Machine

@ HITH

Laptop

Java Virtual Machine
Oracle Application Server

Figure 5.3-5: Field Audit Data Repository

The Field Audit application is integrated into the main UC Modernization System. It shares
common data as regards employer and tax data. Its audit cases are part of the enterprise
database maintained by UCMS. The Field Audit application on each auditor’s laptop has its own
subset database, containing just the auditor’s assigned cases. This database is implemented
using Oracle Database Lite.

Oracle Database Lite is a small-footprint relational database and synchronization architecture
designed to extend relational database functionality and enterprise data to mobile and embedded
devices. The engine is a true relational database engine delivering persistent storage for record
sets and the ability to modify and retrieve records. It also provides the integrity mechanism to
guarantee that data is not lost or corrupted if a handheld device is powered off or dropped during
processing.

Oracle Database Lite features automated synchronization of remote databases with a master
database via its included Mobile Server. The Mobile Server is a server program, implemented
using J2EE servlet technology, which manages two-way data synchronization between a source
and a target database. Two-way synchronization means propagating the changes made by
mobile auditors in their local databases to the enterprise UCMS database and making available to
the mobile auditor the changes that are made to the enterprise UCMS database by some other
user or process.

There are two parts required to perform synchronization. A small Sync Module component is
installed on each mobile auditor laptop. The Sync Module component communicates with a
Mobile Server servlet using familiar HTTP mechanisms. The Mobile Server resides within an
instance of Oracle Application Server.

The Mobile Server manages bidirectional updates between the mobile auditor databases and the
main UCMS database. To do so, a series of queues are maintained by the Mobile Server. These
gueues store updates from mobile auditor databases along with updates to the main UCMS

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 160
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

database which are destined for remote auditors. These queues are managed by a background
process running within the Mobile Server component.

5.3.2 Data Store Characteristics and Mappings

This section provides additional characteristics and tracing information for each data store
described in the previous section. It will continue to be filled out as the project progresses
through the detailed design phases for each release.

5.3.2.1 OLTP On-Line Transaction Processing

Characteristics

Database | Oracle
Schema | UCMS
Access
Naming | All physical naming will follow DLI Database Standards.
Volume Metrics
Performance
Enhancements
Data Retention | Not specified at this time
Data Models | UCMS Erwin Models — All subject areas
Mapping
Key | Release 0,1,2 Use Cases and Requirements
Requirements
Interfaces Interfaces based on Wage / Tax Functionality Requirements

5.3.2.2 Audit Database

Characteristics

Database | Oracle Lite
Schema | UCMS AUDIT
Access
Naming | All physical naming follows DLI Database Standards.

Volume Metrics
Performance
Enhancements
Data Retention
Data Models | UCMS Audit

Mapping
Key | Not specified
Requirements
Interfaces Oracle Sync
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 161

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

5.3.2.3 Reporting/Financial Database

Characteristics

Database | Oracle
Schema | UCMS RPT
Access
Naming | All physical naming follows DLI Database Standards.

Volume Metrics
Performance
Enhancements
Data Retention | Not specified by DLI
Data Models | UCMS Reporting Models

Mapping
Key | Release 1,2 Use Cases and Requirements
Requirements

Interfaces Interfaces based on Wage & Tax Requirements

5.3.2.4 FileNet Datastore

Characteristics

Database | File System and Oracle
Schema | FileNet schema
Access
Naming | FileNet
Volume Metrics
Performance
Enhancements
Data Retention | Not specified by DLI
Data Models | Model from FileNet

Mapping
Key | Release 0,1,2 Use Cases and Requirements
Requirements

Interfaces Interfaces based on Wage & Tax Requirements

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 162
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

5.3.2.5 ETL Datastore

The ETL datastore is used to hold metadata for InfoSphere Datastage. It is not intended for
access by applications or users.

Characteristics

File System for | DB2. File System for Raw data and DataStage metadata.
Raw data and
DataStage
metadata
DataStage | DataStage schema
schema

DataStage | DataStage
DataStage | DataStage models
models

Mapping
| Not applicable; product-defined formats, not accessible by users or developers

5.4 Technical Data Architecture

This section describes the technical architecture and the key software and hardware components
required to implement this concept. To address the availability, disaster recovery, scalability and
performance requirements for UCMS, Oracle’s Real Application Clusters (RAC) was chosen.
RAC provides UCMS with certain key benefits in the area of scalability and reliability.

5.4.1 High Availability

The figure below describes a logical/functional view of the UCMS Production environment at the
primary site.

The configuration creates a clustered environment with multiple processors connected via a
Gigabit Ethernet connect to enable Oracle RAC configuration connected with two separate
database instances. Each of these processors is designated as the primary processor for the
UCMS applications. The RAC configuration enables each of these processors to support other
applications in a secondary mode. This configuration shares a common Storage system (SAN).

The Oracle database management system is made highly available on the pSeries production
servers using Oracle RAC. Oracle RAC provides a clustered database. A cluster is a group (two
or more servers) that cooperate as a single system. Workload is distributed evenly and that
database is shared. In the event of a server failure, the users remain connected to the database.
The hardware is configured in a redundant manner to avoid single points of failure within the RAC
configuration.

Oracle’s Real Application Cluster

This environment is typically made up of several equally powerful SMP Machines, see Figure
5.4.1. While any number of computing nodes can be used, and the diagram shows four server
machines, UCMS actually uses a 3-RAC cluster. The concept and operations are the same.
Within each machine, resources such as processors and memory are shared. One database is
shared between machines by use of a high speed interconnect between the machines. With this
configuration multiple machines, each with multiple processors, efficiently divide queries and
reduce time needed to perform queries. Other database operations, such as loading data,

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 163
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

backing up and restoring tables, and creating indexes on existing data, can take advantage of the
RAC Architecture.

A natural benefit of RAC is high availability. If one node of the cluster goes down, the other
node(s) of the cluster continue. Users who are on a node that goes down are transparently
shuffled to the remaining node(s). Since the database is shared between all nodes, if a node
goes down, the database remains available.

Figure 5.4-1: Stylized Real Application Cluster

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 164
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Advantages/Disadvantages

RAC is a configuration of one database using multiple Symmetric MultiProcessing (SMP)
machines. One advantage is that a query can be performed in parallel across multiple machines
each with multiple processors.

Another advantage is that this environment is scalable. It allows more machines to be added as
needed, thus increasing the parallel query capability as well as providing a higher level of
availability for the application.

One disadvantage is Oracle’s shared disk architecture with regard to bufferpools. Bufferpools are
the memory into which all data is read and updated in Oracle. Since the database is shared
among many processors each with its own bufferpools all data has to be pulled into each node’s
bufferpool for use. Thus the amount of memory required is the number of nodes (N) times the
amount of memory per server. This can be mitigated by sizing the memory on the hardware
servers to be appropriate for the number of clustered servers in the RAC instance.

Along with the bufferpool usage is the concern for ‘Hot pages’ in the RAC architecture that results
in Cache Ping. Here if one processor is updating a data page in its bufferpool and a second
processor requests that same page, the page must be re-sent. Heavily used data pages result in
swapping among the bufferpool’s memory, which is known as Cache Pinging. The characteristics
can change over time, and it can be difficult to find a single tuning mechanism that resolves
operational issues across all operational scenarios and over time. It is possible that UCMS
settings will change over time as the system is used..

An area that may be a concern is with long running queries and Oracle’s UNDO/REDO
architecture. Oracle stores the UNDO data in a circular tablespace that has a finite size. Once
the maximum is reached, the circular tablespace is reused beginning with the oldest entries.
However, long running queries need the “old” versions of data in the circular tablespace for better
performance. If data is overwritten and does not exist in the circular undo log, the queries fail and
the data must be reloaded, reducing performance.

5.4.2 Disaster Recovery

Disaster Recovery (DR) is implemented and managed by DLI.

A traditional approach to disaster recovery is creating a tape archive of the UCMS database using
Oracle’s Recovery Manager. Oracle Recovery Manager (RMAN) provides full backup and
recovery support. RMAN backup options include on-line or offline database backup and table
space backups, backup scheduling, and automation. Oracle includes recovery options which
allow one to recover a particular table, the table space, point in time recovery to a specific local
time, and an entire database recovery. Archive tapes must be created on a periodic basis, and
verified for completeness, usability, and timeliness. For a “low-tech” recovery option, the tapes
can be sent to a disaster recovery site, where they can be restored to a mirror of the UCMS
production database in the event of an unanticipated outage at the primary database location.

The Tivoli Storage Manager (TSM) interfaces with the Oracle Recovery Manager using the TSM
for Database client that resides on the Oracle database servers. TSM manages the operational
tape process, including creating the DR copies, managing the tapes within the tape library and
managing the recovery of the data on the tapes (for local or DR recovery). The actual backups
are driven by the database administrator using the Oracle toolset, and are outside the control of
the UCMS program.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 165
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Document
Data

Oracle
> Recovery <s——————
Manager

Figure 5.4-2: Archiving to Tape Using Oracle Recovery Manager

5.4.3 Backup and Recovery

Oracle Database backups, both online and offline, are done using RMAN which initiates the backup via the
brbackup command. This tool is used by the Oracle database administrators. RMAN then communicates
with a TSM for Database client on the database server which in turn sends the data to the TSM server and
the disk pools or tape library.

5.4.4 Operational Considerations

The UCMS Data Architecture is implemented using shared infrastructure for Oracle Enterprise
Edition. Oracle Enterprise Edition provides efficient, reliable, secure data management for high
volume on-line transaction processing (OLTP) and query-intensive applications. It provides the
tools and functionality to meet the demanding availability and scalability requirements of UCMS.

Audit

Oracle provides integrated, flexible, and reliable auditing capabilities so all database operations of
interest can be recorded at the appropriate level of granularity. Audit trail data are securely
recorded in the Oracle data dictionary and/or operating system files. Fine-Grained Auditing (FGA)
provides the ability to monitor data access based on content. A built-in audit mechanism in the
database prevents users from bypassing the audit. FGA provides an extensible interface for
creating policies to audit SELECT and DML statements on tables and views. The DBMS_FGA
package administers these value-based audit policies. Using DBMS_FGA, the security
administrator creates an audit policy on the target object. If any rows returned from a query match
the audit condition, then an audit event entry is inserted into the fine-grained audit trail. This entry

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 166
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

includes all the information reported in the regular audit trail. See the Audit Records and Audit
Trails section. Only one row of audit information is inserted into the audit trail for every FGA policy
that evaluates to true. The extensibility framework in FGA also enables administrators optionally
to define an appropriate audit event handler to process the event, for example by sending an alert
page to the administrator.

System Management

Oracle Enterprise Manager (OEM) is the comprehensive management tool for managing the
Oracle database and application environment. Oracle Enterprise Manager includes an easy-to-
use centralized console, a rich set of management tools, and the extensibility to detect and solve
problems that may arise. It also includes several administrative applications for performing day-
today tasks for databases and applications, such as scheduling backup routines.

Oracle Enterprise Manager proactively monitors the health of all application components, the
hosts that they run on, and the key business processes that they support. If a potential problem is
spotted, Oracle Enterprise Manager’s diagnostic tools help to identify the root cause. In addition,
Oracle Enterprise Manager helps visualize the impact of application performance in the context of
business impacts,

The following four functional areas have tools that can be used:

¢ Configuration Management: In order to achieve the necessary level of performance and
availability to support the business objectives, applications must be configured properly.

- Automatic Discovery: The first step in managing an application is to establish a detailed
inventory of the application environment. Oracle Enterprise Manager collects detailed
configuration information of all host systems and the installed software components
across the environment.

Data collected includes information on:

o Host hardware specs including number and clock speed of the CPUs,memory, hard
disk and network information

o Operating system parameter settings, file system information and installed packages
and patches

o Oracle software installed on the host including version and component information,
patch sets and interim patches, as well as software configuration settings

o Third party software that are used in conjunction with Oracle technologies
o The relationships amongst applications and their infrastructure components

- Policy Manager: Once the configurations are captured, the next step is to make sure that
all the application components are set up properly. Enterprise-wide compliance with
configuration policies can be automatically monitored. Policy compliance is evaluated
continuously even as new targets come online. Administrators are immediately advised of
any policy violations as they are identified, and suggestions are given as to how to
address the violations.

e Application Performance Management: administrators need to monitor the applications
proactively for potential problems and fix problems at the first sign of trouble.

- Proactive Monitoring and Alerting: Oracle Enterprise Manager continuously monitors key
performance, usage and health indicators, and the occurrence of errors and warnings of
the discovered application components. If any anomaly is found, Oracle Enterprise
Manager alerts administrators to the potential problem, and can escalate the problems to
other persons as necessary. In addition, features such as Automatic Root Cause

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 167
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

http://download-east.oracle.com/docs/cd/B19306_01/network.102/b14266/#i1008289
http://download-east.oracle.com/docs/cd/B19306_01/network.102/b14266/#i1008289

Analysis and Adaptive Thresholds increase the accuracy of the alerts by reducing false
positives.

- Dashboards: Dashboards provide the graphical visualization needed to achieve situation
awareness for the health of applications when emergencies occur, or simply when the
administrator needs to get an idea on how the application is performing. Increase
performance and availability through proactive monitoring and alerting. Administrators
may customize the dashboard pages by choosing the metrics and statistical functions for
roll-ups.

- Configuration Comparison: Oracle Enterprise Manager provides tools for comparing
elements within the application environment, or between different snapshots of the
application environment at great detail, allowing the administrator to quickly and easily
pinpoint any potential differences. This helps to keep the components in the application
environment synchronized and reduces "configuration drift". It also simplifies
investigations into why components that are presumed to be identical may behave
differently.

- Interactive Transaction Performance Analysis: After an application performance problem
is identified, the next step is to investigate the cause of the problem by locating
transaction bottlenecks using captured execution data. This tool allows the administrator
to:

o Look for all the transactions that are associated with a user.
o Identify the slowest running transactions.

o Get the aggregate breakdown on where time is spent in processing transactions, and
the incremental CPU and memory consumption for the steps.

o Visualize the data graphically.
o Trace a particular transaction to identify bottleneck.
e Service Level Management

- Modeling Application Services: To enable monitoring of application services,
administrators can define Service Level Objective, Availability Criteria, Key System
Components, and Service Tests to model services as executed by end-users.

- Monitor Service Performance and Usage: Service performance indicates the quality of
service that applications are providing to their end-users. Service usage represents the
user demand of the application in terms of its underlying systems components. Both
performance and usage metrics are essential service level indicators because often, poor
performance may be a result of an overload of demand for an underlying system
resource. Oracle Enterprise Manager enables administrators to choose from a variety of
out-of-box system metrics that can best represent key indicators for the performance and
usage of applications,

- Reporting Service Level Indicators: Oracle Enterprise Manager provides at-a-glance
summary and detailed views of applications. Reports are provided both at the executive
level for assessing overall service level compliance and making IT investment decisions,
and at the administrative level for ensuring consistent delivery of high service levels.

e Automation: Oracle Enterprise Manager provides automation capabilities that optimize
resource consumptions and simplify the day-to-day management of the applications.

- Patch Management: When a patch becomes available, Oracle Enterprise Manager
evaluates the environment to see if the patch is applicable, and alerts the administrator
on its availability.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 168
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

- Cloning: Oracle Enterprise Manager provides the ability to create a new application
environment based on an existing working model. When rolling out an application,
administrators may want to create a staging environment to assemble all the components
and run system tests to ensure the proper integration of all the pieces.

- Configuration Snapshot: Administrators often need to create new systems that are
equivalent in performance to existing systems. One way to do this is to capture point in
time information for an existing system. This information can then be used as a blueprint
for creation of new systems. Oracle Enterprise Manager allows users to easily capture,
store and view such information.

In addition, Tivoli Monitoring for Databases (ITM for Database) provides proactive monitoring and
alerts on Oracle problems. Features of IBM Tivoli Monitoring for Databases include:

e Thresholds — reference level for the monitor metrics; when exceeded, an indication of the
threshold exceeded is given, such as by sending a Tivoli event, and/or email is sent, and/or a
task is launched, and/or a page or phone call to the database administrator is made.

e Parameters — specific resource names that are being monitored.

e Occurrences — the number of times thresholds are exceeded before an indication of an event
is sent.

e Severity — the level of severity indicates the business impact of the event.
e Schedule — time of day and day of week that the monitors will run.
The customized alerts that are generated appear in the monitoring tools:

¢ Tivoli Omnibus — view alerts based upon data for a specific monitoring period and a ticket
opened in ServiceNow.

e ITM Console — view real-time data and up to 24 hours of historical data.

An enterprise Tivoli monitoring environment has already been established at DLI. UCMS enables
the monitoring, logging of the UCMS Oracle databases and collection of performance data of the
new UCMS servers to the existing Tivoli Data Warehouse to be used for reporting purposes.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 169
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

6.0

Security & Privacy Architecture

6.1 Introduction

The section describes the UCMS Security Architecture. The purpose is to describe how the
principles of information security are applied to UCMS, relative to applications and services.
These principles are applied according to the identified business and information technology
security requirements that have been gathered to date.

The UCMS Security Architecture is represented using the following architectural views:
e Conceptual Architecture

The conceptual architecture identifies the different elements (process and technology) of the
solution and their relationship to one another.

e Logical Architecture

The logical architecture defines the required security building blocks (both process and
technology), their functions, protocols and interfaces.

e Physical Architecture

The physical architecture documents the hardware and software element relationships and
boundaries that apply to the solution pipeline.

The Security Architecture for UCMS is based on the Business Policy and Process Infrastructure,
and IT Security Services. Process flows naturally reflect the events and conditions in which
information assets are acted on by users who have roles or by processes acting on behalf of
users who have roles.

IT Security Services are already in place, but must be leveraged and extended in the architecture
for UCMS. The CA eTrust products are an essential part of the DLI IAM Framework, for example,
and the security architecture has to be flexible enough to support different deployment scenarios
according to the various UCMS Functional Releases.

UCMS Solution Architecture

The initial solution models were used for this critical step in the design process in an effort to
develop the solution architecture. Architectural decisions, principles and standards are used to
drive the security architecture over the DLI IAM Framework. They further dictate what security
subsystems to incorporate, which functions and mechanisms within each subsystem to deploy,
where to deploy, and how the deployment is managed.

6.2 Security Design Principles

Applying security design principles to the security architecture design documents the structure,
capabilities and components of the solution in a manner that is independent of specific vendor
products and services. The appropriate architecture is directly related to understanding the DLI
UCMS business and information technology security requirements and translating them into the
appropriate security services.

The security design principles applicable to this architecture include:
¢ Define the appropriate levels of security controls based on UCMS business objectives.

e Maintain appropriate policies and standards to implement systems securely.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 170
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Define zones of control and the security requirements for information passage between them.

e Leverage and extend existing security controls that impose minimal impact on COTS
applications, creation of new applications and their deployment.

e Provide security controls as a service to the DLI UCMS shared infrastructure. These controls
include:

- Utilize user identities consistently across all UCMS components as appropriate.
- Obtain user identification with appropriate assurance of the validity of the identity.

- Successfully identify and authenticate all users (including inter-application, intra-
application and service IDs) before gaining access to protected UCMS assets and
systems.

- Trace credentials to a specific user.

- Protect all credentials while at rest and in transit from unauthorized modification or
unauthorized disclosure.

- Define and implement an access control policy using Role Base Access Control to control
access to DLI UCMS resources and services.

- Manage security rules across the DLI UCMS network infrastructure in a consistent,
understandable and enforceable manner.

e Security should be transparent to user experience

e Establish secure communication within DLI and between UCMS and other departments and
partners. “Partner” in this context includes non-DLI and in some cases non-PA state
agencies. Examples include the PA Department of Revenue (DoR) and the Internal Revenue
Service (IRS).

¢ Enable confidential storage and transmission of sensitive UCMS information.

e Preserve integrity of data within files including application and system configuration files,
message packets transmitted through the network and critical files and messages transmitted
outside the DLI UCMS Infrastructure.

e Assess all incoming traffic for reasonableness before it is processed by any application or
system.

e Use the existing DLI Identity and Access Management (IAM) Framework to manage security
rules across the DLI UCMS network infrastructure in a consistent, understandable and
enforceable manner.

e Maintain security privileges, user identities and credentials.

e Provide a service that collects information on security events, processes the information and
delivers events and alerts to trigger automated and manual responses.

e Maintain the integrity of systems so as to detect unauthorized modifications.
e Correctly record and secure all security related events.

e Provide security controls that are auditable.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 171
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

6.3 Business-level Security Requirements

There are two identified business objectives of the security architecture:

1. To ensure that the desired UCMS IT business process flow yields correct and reliable results
for the UCMS Functional Releases.

2. To ensure that the potential vulnerabilities and exception conditions within UCMS IT business
process flows are addressed in ways that are consistent with the risk and UCMS
management objectives.

The following general security requirements were identified that impact the security architecture:

e UCMS applications and business services need to be secured because they provide access
to confidential information

e These services are accessible from outside the enterprise environment and have different
security requirements for different access paths

o UCMS service requests cross security domains in the enterprise and these policies need to
be managed across security domains

o UCMS wants to achieve Single Sign-On (SSO) for internal and external web based users to
access their services. An objective would be to have a single Web-entry credential to
maintain for each user, and minimize the need for maintenance of any second-level
application sign-on credentials.

e Access to UCMS services is allowed from business partners.
e Composite services may exist that rely upon other services to complete its task
¢ UCMS wants to audit access to service functions for meeting compliance goals

o UCMS services are part of the business process and subscription to services needs to be
managed efficiently

e UCMS has a requirement to efficiently enable its partners and vendors to access UCMS
services

6.4 Overarching Architectural Decisions

Higher-level architectural decisions have already been committed by the business, and form the
basis for additional system requirements going forward.

¢ An Enterprise Service Bus is implemented using webMethods. A Universal Discovery and
Description (UDDI) service is used for service access point lookup on the bus.

o Adobe Experience Manager (AEM) portal is the chosen mechanism for consolidated Ul
presentation to the user.

e The enterprise identity and access management (IAM) solution is the CA IAM, which utilizes
Active Directory as its LDAP store.

e The authentication and authorization policy decision point solution is CA SiteMinder.

e Allinput devices are browser based and must maintain a session cookie for the duration of a
session.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 172
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

6.5 UCMS Conceptual Security Architecture

The UCMS conceptual security architecture separates security functions into tasks. Breaking
down security functionality into tasks helps to build security services across DLI UCMS without
relying on application-level implementations of security. The figure below represents a high level
illustration of the UCMS conceptual security architecture.

e Users exchange security related information with the system through open security
standards.

e Most of the underlying security infrastructure is not exposed as Web Services (shown in the
middle section of the diagram). The purpose here is to illustrate that they may be exposed in
the future, consistent with an over-arching SOA strategy that includes security services.

e The solution leverages the existing enterprise security infrastructure (shown on the right side
of the diagram) such as the DLI IAM Framework for authentication, and authorization applied
according to managed security policies.

Authentication
and

% - Authorization
z Policy Mechanisms
» Application
. Services =1 >
a 8 <:> User
o i 3 Registries and
= Security E Directories
> Context E —_
Z X w
s Services 2 —
= 3 Securi
S Auditing % <:> Policig
(<Y & Logging -
A Services
8

Figure 6.5-1: UCMS Conceptual Security Architecture

The UCMS Architecture, depicted in the middle box of the above figure, includes a number of
functional service groups, each of which may include one or more service interfaces to perform
specific tasks. In the current UCMS Functional release (R2), only the basic interfaces that support
core Web services security capabilities are defined; more services may be added and existing
services may be expanded in future versions of the architecture to provide richer and more
comprehensive security features.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 173
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The following describes the service groups and their current member services.
Policy Services

This service group provides policy-based authorization and access control for Web Services and
system resources. The services include:

e Policy Decision Service — serves as an authorization authority for service providers that
choose to use an external Policy Decision Point (PDP). This service accepts authorization
gueries and returns authorization decision assertions. The heart of the service is a policy
evaluation engine, which applies policies based on a variety of inputs such as the target
resource, the action or operation requested identity of the requester, etc.

e Policy Retrieval Service — exposes security policies in eXtensible Access Control Markup
Language (XACML) format. This service can allow service providers to retrieve policies for
their resources, especially when they choose to implement their own PDP logic. This service
can also be used by applications other than Web Services to retrieve stored resource policies
(e.g. access control over portlets in a portal server). The CA SiteMinder Policy Server
supports XACML policy interchange.

e Policy Administration Service — This service uses XACML as a standard policy exchange
format and can be used by management applications to compose, modify, and control
policies. Depending on the access control model adopted in the domain, this service’s
functionality may include Create, Read, Update, Delete (CRUD) operations for policy rules,
rule sets, roles, permissions, security categories and compartment labels, among others.

o Policy Enforcement Service — This service utilizes the centralized Policy Decision Service,
and enforces policy decisions at the point of service interaction.

A Policy Subscription Service may also be defined, along with a related callback interfaces that
allow interested parties to subscribe to and thereby receive real-time notifications on policy
changes.

Security Context Services

In the UCMS service environment, security contexts are important in addressing service
orchestrations and workflows. They may also help improve efficiency in interactive scenarios. For
example, results of certain authentication and authorization steps may be performed only once for
a series of consumer-provider interactions within a common security context.

Initially, the security context services consist of Web Single Sign-On (SSO), with a product-
specific solution supported by CA SiteMinder and its distributed agents.

The Figure below highlights some important aspects of the security stack as generalized for SOA.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 174
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Web Sernce Appicabions

UCMS SOA

UCMS

Network Security
Approaches

CMS Standard
Networking
Layers

IPSec

Application | Trust Moget }?S«.mwServces ” SDKs #? Secut,‘ugml Conceptual
Layer Architecture
PG Privacy § | WS Federaton ' 1 We-Authorizaton | —
| Pelpicpekipecly | PR pplgupangcds | feitedipmipasa 1 ~Application
SOAP {wwmc, ! pVSSewre(,onva' :- WS-Trust ' Message
———— pipiibutidipiuptaply) PPl Secunty
) | W5 Secunty (osmae seeur |
=== - ecurity
I SAML II XACML I 1 XEMS Inormal?
-A,"L - ndtl
' ML Security Data’
I XML DSIG I [XML ENC < Cryptographic
primitives
ce I SSL/TS I UCMS Common

" Infine Network Encryplors I

Bometrics

I Hardware Cryplo-modules I

Figure 6.5-2: Future SOA Security Context Services Superset for UCMS

Physical

Priysical | Unk Protection

Lk Encryplors

Auditing and Logging Services

DLI UCMS auditing is also an important requirement for the security architecture. Two pieces of
functionality are used: recording the service level activities (logging), and identifying anomalies
(such as access violations or attacks) from those records. The logs may include:

e Outbound message information (ldentity, message ID, sending timestamp, host, target
service, etc.)

¢ Inbound message information (Identity, message ID, receiving timestamp, etc.)
e Message signature verification (success / faults)

o Certificate validation and status checking results (success / faults)

e Policy decision results (permit / deny / indeterminate)

e Invocation status (resource, action, success / faults)

The service interfaces defined by this UCMS Conceptual Architecture are desired specifications,
not implementations. The actual implementations utilize additional technologies but the
specifications must remain stable and interoperable. Going forward it is envisioned that the
specifications will be driven by the collective efforts of various joint and shared initiatives and their
requirements, while at the same time reflecting current industry standards and best practices.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

175

6.6 UCMS Logical Security Architecture

The UCMS logical security architecture is based on the both the IBM SOA Security Reference
Model and the UCMS Technical Solution Review Component Model. The logical security
architecture contains three main components:

e Current UCMS Business Security Services
e Current UCMS Security Policy Infrastructure
e Current UCMS IT Security Services

This is shown in the figure below.

Business Security Services

Security Policy Infrastructure

—

| Enterprise
% Information

E E Wb System
Client Browser g Web Portal # Application
= = Data Serven’
EE—

Services

Existing
./ L Applications/

Services

|

IT Security Services

Policy Enforcement

Figure 6.6-1: UCMS Logical System Design Architecture

In this logical architecture:

e Business Security Services leverage DLI UCMS IT Security Services and UCMS DLI Security
Policy Infrastructure to build business-specific security services.

Security Policy Infrastructure not only provides security policy lifecycle management but also
policy decision and transformation. Policies can be associated with service definitions and
metadata and published back to service registries.

e |IT Security Services are the building blocks to provide security functions for UCMS services.

As shown above, there are multiple security enforcement points within the DLI UCMS
environment. These enforcement points leverage consistent, coordinated, business-driven
policies. The security infrastructure is implemented within the agency or via the Office of
Administration using components such as SiteMinder, which are not configurable or accessible by
UCMS developers. Interactions are limited to security integration with the UCMS solution.

Since the J2EE Functional Release applications are shared and reused, the applicable policies to
address changing needs, heterogeneous application platforms and protocols (across business

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 176
System Design and Blueprint - Updated April 2016

Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

partner organizations and vendors) are easily accommodated. Policies are available not only to
different enforcement points but also to the DLI UCMS Security Services.

These policies are applied by security enforcement points within these components by the DLI
UCMS IT Security Services. These DLI UCMS IT Security Services are leveraged by centralized
services such as a secure proxy taking advantage of the DLI IAM Identity and Authentication
services.

The architecture in the Figure below meets these requirements. The Portal, WebSphere Process
Server, webMethods ESB, FileNet EDMS, and Corticon Rules Engine work with the J2EE
applications to leverage information from the back-end services.

HTTP/ * Portal server
HTTPS * Business Process Manager %

* webMethods ESB . (B:L?s-li-r?e:smdums
SOAP/ * Business Objects

N Applications ;

* Legacy Services
* Oracle

* Legacy Data

HTTP/ — Firewall
HTTPS

Firewall — * Adobe Forms and Letters
* FileNet EDMS

* Corticon Business Rules
* WAS / J2EE Framework

SOAP/IMS

Figure 6.6-2: Solution Architecture

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 177
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The diagram below illustrates the logical security architecture for a typical scenario involving the
Portal Application acting as a service consumer that invokes and consumes a Web Service. This
basic invocation sequence may be extended to more complex usage. For example, the Web
Service may invoke another service on the user’s behalf; this is known as service chaining.

Web Sarvice Provider

| Portal Applkation)

BEEE

§
:

2 [==]

ove
Ll
' S Managoment
""""""""" ot Cornson
LECEMD — lnotatoaPath - ‘Ourolsans Cal 0 Soned Massage I

Figure 6.6-3: UCMS Logical Security Architecture Highlighting a Single Trust
Domain

The DLI UCMS Logical Architecture above introduces additional components involved in the
security architecture:

e SiteMinder has an Application Server Agent (ASA) package for J2EE that can assert a user's
identity at the service provider interface, based on authentication tokens inserted into the
session at the portal perimeter. This includes the ability to support authorization based on the
caller’'s memberships or granular permissions. In such a case, WebSphere Application Server
does not need to separately query the LDAP user registry.

e For service providers and consumers, a SiteMinder Software Development Kit (SDK) can be
used for standalone applications to facilitate interactions with the centralized SiteMinder
Policy Decision Services.

It is important to note that SDKs and associated APIs enable platform- and technology-
specific implementations are only provided as developer aids, so that access to the standard
DLI IAM UCMS interfaces may be rapidly enabled. They are not an architecture component
per se, nor should they be treated as standards. UCMS applications should only rely on the
Web Service standards as outlined elsewhere in this document.

e Security handling may also include a set of SOAP Message Handlers that can intercept
inbound and outbound SOAP messages at runtime and apply security related processing in a
way that is transparent to application logic. Based on anticipated high traffic volumes,

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 178
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

security related processing for a WebSphere Application Server to perform this type of
processing may be deemed impractical. The primary purpose of depicting it this way is to
highlight the complexity.

Multiple message handlers can be “chained” together and can be configured at deployment
time, which enables flexible and extensible security configurations. For example, an auditing
handler may be added in front of the authentication and policy enforcement handlers, as
illustrated in the below Figure: Note that “inbound” and “outbound” are relative terms. The
same SOAP request is an outbound message to the service consumer but an inbound
message to the service provider. Because a service provider can also be a consumer to other
services, the SDK includes both inbound and outbound message handlers. We treat it here
as a pure logical concept, not an implementation technique. Depending on the physical
system architecture, the handler may map to a software component within the Web Service
runtime, or a standalone application by itself.

6.6.1 Policy Application Footprint

Policy Services are applied across the outer tiers of entry into the UCMS environment. The
footprint of agents and their consulted Policy Server is depicted in the figure below. The Policy
Server is the Policy Decision Point (PDP), and each agent deployment represents a Policy
Enforcement Point (PEP).

Specifically, the UCMS portal (entry-point at [1], [2]) and Partner-facing exchanges are protected
as points of entry [4] by SiteMinder Web agents, for authentication. Authorization decisions are
additionally applied at the web Portal [2] for first-level access, and then for application-specific
internal accesses at the portlet delivery tier [3] running on WebSphere Application Server (WAS).
Policy enforcement is provided at the portlet delivery layer by the SiteMinder ASA components,
which provide WAS-native identity assertion and Java-standards-compliant authorization.

The Enterprise Service Bus supports both portal applications and external partners using file-
based exchanges, and uses an instance of the SiteMinder Web agent or ASAs for verifying the
SM credentials forwarded by its externally-facing counterparts. Another SM ASA agent
deployment is shown as optionally applied at the Workflow Services platform.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 179
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

i /—Partner—fam ng Web tieF——
| Proxy Server

Portal Web tier—\

a |
[1]

s server | SMWebAgent --r-F—-—————————————— |
|
|

SM Web Agent g J |
|
|

| /—Securlty & |AM Services: ~ :

I?] |

OWCI Portal Bervices Policy Serviges Identity Management :
A |

— N |

Portal Definition | SM Policy Server CA IAM Services :

|

] |

\ | / |
| |

| Identity Reporitories |

[|

[3] [

o) . |
~—Application Delivery tier——— Active Directory |
} |

} |

Portlet Servides _ J M
|
|

SM Application |
Server Agents) |
~——Shared Seryvices: ~ |

|

|

Local Business Logic Enterprise Service Bus Workflow Sefvices |

_____ i |
—— | |
SM Web Agent L.—.I sM Application - |
Or ASA —1— Server Agents | |
[
C .. | |
|
. J \ | J o
|
L o e ____ |
/—Data and Shared Support Services
L j

Figure 6.6-4: Policy Decision and Enforcement Points

6.7 UCMS Physical Security Architecture

The recommended UCMS Physical Security Architecture is depicted below in relation to the
existing DLI security architecture. The implemented physical security architecture, controlled by
DLI/OIT, may or may not match the recommended architecture at any given time, and updates or
improvements are solely at the discretion of DLI/OIT.

A security zone is a grouping of components that are subject to a defined set of security controls
and mechanisms to ensure a designated level of security. The zones are grouped into regions
with similar security requirements and levels of risk to ensure each zone is adequately
segregated from other zones.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 180
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Recommended UCMS Physical
Security Architecture

Redundarit
Cl Firewall
UHNCOHTROLLED
Redundant —
_ Web Secuity Zone
: Firewall
=" 0%

Femote L& Sites

CONTROLLED (DA
(Mieb Securty Jone

U0 pRIIoRRIET

User WLAN

Fedundant
e 7 | RESTRICTED
il Redundant
1:1:!1 Data Zone
Firewall

0%

R | E—
Development ==] Fecurity DU 1AM Infa st cture

WLAH Froduction hianage merit
SECURED
[DOata Zone))

WLAN WLAM
Figure 6.7-1: Recommended UCMS Physical Security Architecture

6.7.1 Security Zones

Security zones are logical constructs that segment the solution into different zones that are based
on the common business value of the assets within each zone. For the UCMS project four types
of security zones have been identified:

1. Uncontrolled: This is an un-trusted zone, i.e. the Internet, where users are un-authenticated
and traffic is un-validated.

2. Controlled: This is a semi-trusted zone, i.e. the Internet-facing DMZ and the intranet,
including the DLI main building LAN, WAN sites and mainframe, where traffic is authenticated
and validated but comes from, and goes to, an insecure source.

3. Restricted: This is a trusted zone composing of the following environments (Development
Unit Test (DEV), Component Integration testing (CIT), Training (TRN), Acceptance Test
(SAT), Test for Production staging (TFP), and Production (PRD))

4. Secure: This is also a trusted zone, i.e. the management network, with maximum security
access including physical access controls, and a secure server zone.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 181
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The figure below illustrates the concepts of security zones as described above.

Interaction §)_/s!em Svcs,
Secure Proxy Servers Eraor;r;esrss;r\r/\llti:ézg 32:::2 ittt s 2, Sl lieles
Business application ! Repositories; network to
f . . separate management
ntrusion Detection System services systems, components from
Information services P! p
production systems
systems,
Access services systems
N\ { N\
| Uncontrolled : | Controlled : | Controlled : | Restricted | Secured
Zone | : Zone | ! Zone | Zone | ! Zone |
4444444444 N —_ s — s —_— = e — e — — — — — s — s — .
Production Management
Internet Internet DMZ Intranet Network Network
— | J \ J
Managed
LESS SECURE MORE SECURE

Figure 6.7-2: Security Zones and Environments

The following sections detail the various types of zones. The principles of security zones can be
used to determine the placement of various components within the appropriate zones.

Uncontrolled Zone

Internet Environment
The Internet cannot be controlled and should not have any components in it.

Controlled Zone

Internet Environment

The Internet DMZ is a controlled zone that contains components with which clients may directly
communicate. It provides a “buffer” between the uncontrolled Internet and internal networks. This
DMZ is bounded by two firewalls and there is opportunity to control traffic at multiple levels:

¢ Incoming traffic from the Internet to hosts in the DMZ
e Qutgoing traffic from hosts in the DMZ to the Internet
e Incoming traffic from internal networks to hosts in the DMZ
e Outgoing traffic from hosts in the DMZ to internal networks

The transport between a controlled and an uncontrolled zone is classified as public. The transport
between a controlled and another controlled or a restricted zone is classified as managed.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 182
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Intranet Environment

Like the Internet DMZ, the DLI corporate intranet is a controlled zone that contains components
that clients may directly communicate with. It provides a “buffer” to the internal networks.

Restricted Zone

Development & Unit Test Environment

DLI UCMS can have this network zone designated as restricted, that is, they support functions to
which access must be strictly controlled, and direct access from an uncontrolled network is not
permitted. As with an Internet DMZ, a restricted network is typically bounded by one or more
firewalls and incoming and outgoing traffic may be filtered as appropriate.

Component Integration Test Environment

DLI UCMS can have this network zone designated as restricted, that is, they support functions to
which access must be strictly controlled, and direct access from an uncontrolled network is not
permitted. As with an Internet DMZ, a restricted network is typically bounded by one or more
firewalls and incoming and outgoing traffic may be filtered as appropriate.

Training Environment

DLI UCMS can have this network zone designated as restricted, that is, they support functions to
which access must be strictly controlled, and direct access from an uncontrolled network may or
may not be permitted, as training needs dictate. As with an Internet DMZ, a restricted network is
typically bounded by one or more firewalls and incoming and outgoing traffic may be filtered as
appropriate.

Acceptance Test Environment

DLI UCMS can have this network zone designated as restricted, that is, they support functions to
which access must be strictly controlled, and direct access from an uncontrolled network is not
permitted. As with an Internet DMZ, a restricted network is typically bounded by one or more
firewalls and incoming and outgoing traffic may be filtered as appropriate.

Test for Production Environment

DLI UCMS can have this network zone designated as restricted, that is, they support functions to
which access must be strictly controlled, and direct access from an uncontrolled network is not
permitted. As with an Internet DMZ, a restricted network is typically bounded by one or more
firewalls and incoming and outgoing traffic may be filtered as appropriate.

The transport between a restricted and a controlled zone is classified as managed. The transport
between a restricted and a secured zone is classified as trusted.

Production Environment

DLI UCMS can have one or more network zones designated as restricted, that is, they support
functions to which access must be strictly controlled, and direct access from an uncontrolled
network is not permitted. As with an Internet DMZ, a restricted network is typically bounded by
one or more firewalls and incoming and outgoing traffic may be filtered as appropriate.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 183
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Secured Zone
Management Environment

One or more DLI network zones may be designated as a secured zone. Access is only available
to a small group of authorized staff. Access into one area does not necessarily give staff access
to another secured area. The transport into a secured zone is classified as trusted.

6.8 Security Design
Security Design Objectives
UCMS has security requirements that are met in part by security services within the DLI IAM
Framework and the UCMS Framework. These are detailed in the following sections, and include:
1. Identity services

Authentication and access control

2
3. Data confidentiality and integrity
4. Audit and logging

6.8.1 Identity Services

The identity services are composed of the following components:
e |dentity Foundation
¢ Identity Provisioning

e Identity Federation

Identity Foundation

There are two user repositories that are used in the UCMS solution: Active Directory (AD) server
for CWOPA users, and a Managed Repository for Business Partners.

Identity Provisioning

In order to add, delete or modify individual account information, an identity provisioning solution is
implemented. The CA Trust Identity Minder “Manager” which is a component of the DLI Identity
and Access Management Framework is extensible and provides a secure, automated and policy-
based user management solution. Please note that the CWOPA User Repository is a read-only
replica.

Identity Provisioning guarantees that only the entitled identities with the correct attributes are
provisioned to the directories or MS Active Directory Registries.

Identity Federation

The CWDS Federated Identity Management Architecture solution was defined as a joint CWDS
and UCMS solution. Actual identity management, including identity federation, is implemented
and controlled by DLI. This section provides basic information on the architecture that was
proposed, however, DLI personnel are responsible for maintaining the accuracy of this
information, and the text below may not reflect the as-is implementation.

For this solution design, ldentity federation specifies a cross domain trust relationship, and
implements a cross domain trust service with token mediation & identity mapping which is

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 184
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

provided by a standard component called Secure Token Service (STS). STS is an
implementation of WS-Trust specification and has the capabilities to validate an inbound token
and issue a new token based on policies. This service is discussed more in next section as it is
integrated in the authentication and authorization workflow.

The proposed security solution involves a Federated Identity Management architecture using the
existing CA eTrust SiteMinder for the PA Department of Public Welfare and a CA-eTrust
SiteMinder solution implementation, exclusive for DLI. This is a prime example of extending the
DLI IAM Framework to expand the needs of DLI.

Leveraging a Federated Identity Management solution using the DLI IAM Framework provides
UCMS a standardized means to directly provide services for trusted third-party users or users
that DLI does not directly manage. The figure below highlights the aspects of Federation.

Federated Identity Management

F‘

nidal
da_thanioal en

Frlﬁ U 127 i
1l STk e B2 el

Singha Zign-Cn
wia ML= D SARL
anfack

Heste: Chageam dows nod depict aciual locathon of sysdems

Figure 6.8-1: Federated Identity Management and Access Management in CWDS/UCMS

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 185
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

6.8.2 Authentication and Authorization Services

UCMS DLI IAM Technical Approach and Architecture

The core requirements for securing UCMS systems are as follows:

¢ Authentication: verifying that users or processes that interact with the system are who they
claim to be.

e Access control: This refers to ensuring that authenticated parties have the necessary
permission to access resources or perform operations with the least amount of difficulty.

e Leverage the use of Single Sign-On using the shared DLI IAM Framework. This leverages
the capability for identity assertion between SiteMinder Agents, from the Portal entry-point to
the portlet-specific presentation layer.

o Extend the capabilities of the DLI IAM Framework to support the UCMS J2EE technical
solution with application level authorizations within a given portlet context.

SiteMinder has J2EE Application Server Agents (ASA) based on Java security standards that are
specifically designed for WebSphere. The standards-compliant components meet Java
Authentication and Authorization Service (JAAS) module requirements, and those of the more
recent Java Authorization Contract for Containers (JACC) per JSR-115. A WebSphere-specific
implementation for SiteMinder identity assertion is also included in the form of WebSphere’s Trust
Association Interceptor (TAI).

HTTP/HTTPS clients can pass identity information to WAS by using the TAI. The TAI extracts this
information and inserts the user’s identity as the session’s security “subject”, to make it available
to the WAS container and application components that require it. WAS then queries the registry
as usual, but does not need to re-validate the user's password. (If the user ID is not found in the
registry, the assertion fails.) This provides a powerful mechanism for enabling the UCMS
WebSphere Application Server to participate in a Web single sign-on domain.

UCMS Technical Solution Applications Authentication and Authorization

Process Server and other UCMS Technical solution applications have runtime components that
are packaged as EAR files. All such components are candidates for securing their operations
using the aforementioned TAI and other SiteMinder J2EE Application Server Agents (ASA) for
WebSphere. The SiteMinder ASAs can support fine-grained access control, as well as
authentication and authorization based on standards.

During installation of applications like FileNet, webMethods (Integration and Broker Applications)
and Business Objects, roles are assigned for the administration of these UCMS applications.
This same process is also supported under IBM’s WebSphere Global Security for Network
Deployment. The Figure below highlights the extensibility of the DLI IAM SiteMinder Framework.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 186
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

#= FileNet, Business Objects, WAS Process
1 SPS with SiteMinder J2EE Agents Server, Crystal Reports etc. o
Client | -«
eTrust SiteMinder WebAgent WAS Application Server
SiteMinder SDK . .
Web Server or Secure Proxy server Login Module SiteMinder TAI
JAC || EAD4J.DIAMOND | | JAAS ” JACC |

=

. 1|

CA-eTrust SiteMinder Policy Server

CWOPA

Figure 6.8-2: SiteMinder J2EE ASA “Agents”, SDK and SiteMinder TAIl for WebSphere Application
Servers

UCMS Applications End to End Security

IBM WebSphere Application Server supports three types of authentication for HTTP:
e HTTP basic authentication

HTTP forms based authentication

HTTPS SSL-based client authentication

The Figure below highlights the UCMS end to end application security solution. HTTPS SSL-

based client authentication is the preferred method of authentication for HTTP. HTTP Basic and
HTTP forms based authentication should not be used in the UCMS environment.

) N
HTTP »| Web Agent SsL. N WebSphere . | webMethods

Or T "l orsps = Process Server > ESB

Web Service 2 =
Client i =
A
SsL- .| SiteMinder Policy
” Server
e N

Figure 6.8-3: UCMS Applications End to End Security

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016

187
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

User Authentication (Login Services) Repositories

Users who need to access the application are registered through the security administration
interfaces. Registered users have their login credentials maintained under Microsoft Active
Directory. The CA eTrust SiteMinder solution integrates with the directory service to provide user
authentication and enforce access control policies based on a user’s identity attributes and group
membership.

For DLI, there are three separate user repository scopes, for managing:
e Internal employees
e Business partners

There is a self-service feature for registering and providing self-service management capabilities
as part of the UCMS security architecture. Employees use their existing CWOPA user
authentication, which integrates their UCMS login with their Windows NT LAN Manager (NTLM)
authentication.

The UCMS CA Identity Manager is an integral part of the DLI IAM Framework and provides
automated identity management services (creation, modification, and eventual deletion or
suspension of user accounts and entitlements) for enterprise systems based upon the user’s
relationship with the organization, whether they are an employee, contractor, customer or
business partner, and the specific entitlement policies of the UCMS organization. The benefits
are as follows:

e Integrated identity administration and user provisioning
¢ Delegated administration of user identities

e User self-service of profiles and passwords

e Integrated workflow

e Integrated compliance support

The following steps give an overview of how CA eTrust SiteMinder Architecture works:
User attempts to access a protected resource through the website.

User is challenged for his credentials and presents them to the SiteMinder Web Agent.
The user’s credentials are passed to the policy server.

The user is authenticated against the appropriate user store.

The policy server evaluates the user’s entitlements and grants access.

User profile and entitlement information is passed to the application.

N o ok~ w0 NP

The user gets access to the secured application which delivers customized content to the
user.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 188
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Web Server

Access Portal

Portal User

OWCI Portal SiteMinder

Validate Auth

Display Portlet

Validate Auth

Set Up Subject

Get Az Attribs

Serve Portlet

ESB

Figure 6.8-4: System-level Conceptual Use Cases Related to Access

UCMS Authorization Mapping to Roles and Groups

The authentication of users through the portal and SiteMinder provides access only to the portal
application context, or outer layer. The initial access to a specific portlet is included in this
determination. This has been referred to as “coarse-grained” authorization, however, because it
does not determine which functions can be accessed within specific portal scopes.

The mapping of a user’s access to functions within a given portlet, has been referred to as “fine-
grained” authorization. This capability is facilitated in the UCMS case by asserting the user’s
identity from the portal back to WebSphere. Attributes referred to as “permissions” are retrieved
from SiteMinder as assigned to the roles held by the user, and these employed for determining
whether detailed application-specific resources are to be available to the user.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 189
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

6.8.3 Confidentiality and Integrity Services

Data Protection Services

The DLI UCMS Data Protection Services are concerned with data at rest. The data in transit and
data in process of transformation in the UCMS environment are protected by the Message
Protection Services. The UCMS Data Protection Services should also protect the cryptographic
keys stored in the keystores, security configuration files for all of the UCMS applications (such as
xml.config files), and the data stored in the database used for UCMS business applications and
data access services. There are is an array of products available to protect the file systems that
contain cryptographic keys and configuration files.

Message Protection Services

The Data and Message Protection services support the UCMS security requirements for the
following:

e Transport level security
o Message integrity

¢ Message confidentiality

Transport level security

The transport level security has to be applied to the following DLI UCMS communication
channels:

e To secure the UCMS communication channel for the service request, HTTPS between the
components is implemented.

e Communication between the Application Servers, webMethods Integration Server and Broker
Services occurs using mutually authenticated SSL connections.

e Communication to the DLI UCMS User Registries (MS Active Directories).
The UCMS MS Active Directory LDAP Servers contain user identities, confidential
information like passwords and other related identification information like application ids. To

secure the communication between any component and the directories, the services have to
be configured to use SSL to encrypt information from and to the LDAP services.

¢ Communication between the SiteMinder Policy Server components.
SiteMinder uses SSL for the communication to the SiteMinder components by default. There

is no additional configuration needed. Only setting up the secure communication to the LDAP
server needs additional configuration.

¢ Communication between CA eTrust Identity Manager and
- any adapters for SiteMinder
- Secure Proxy Server [SPS]
- AD Directory Services

CA eTrust Identity Manager may use specific adapters for the target system in provisioning of
user identities. The communication between the adapters and the CA eTrust Identity
Manager runtime is secured by using SSL.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 190
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Communication between the webMethods ESB services running on WebSphere Application
Server, and mediation and event handling with any UCMS Middleware for messaging and
data exchange are secured by using SSL.

Message level protection

A SOAP message travels from the service consumer to the service provider through
intermediaries, UCMS middleware, and other applications along the message path. The
intermediate UCMS middleware or application is capable of both receiving and forwarding SOAP
messages. When an intermediary receives a SOAP message it processes the header entries of
the message intended for it and must remove them afterwards before forwarding the message. It
may also insert a new header entry for the next intermediary.

Secure Protocols like SSL/TLS assure the security of the message during transmission but as the
messages can be received and forwarded by intermediaries, secure end-to-end communication
cannot be guaranteed. Also transport level security has no effect on stored data. Once the
message is received and decrypted, message level security is needed to protect the message.

The message path is not controlled by UCMS and the SOAP message has to be encrypted to
guarantee that the message content is only visible to the service provider and service consumer.

The webMethods ESB service is required to validate the content of incoming requests from the
internal service consumers. If messages from internal service consumers are signed and
encrypted with certificates from DLI UCMS, the configuration for both end-points are the same.

6.8.4 Audit and Logging Services

The audit and logging security services capture information related to the ongoing operations that
require authentication and authorization. They also provide a means to monitor compliance with
the applicable security policies. The auditing services should be able to identify the individual
user that was performing a transaction and their context of access.

The general security requirement for UCMS requires that every component has to be enabled for
auditing and that the UCMS infrastructure has to be in place to submit, persistently store and
report on audit data submitted as events using Tivoli System Management Tools.

The requirements for the audit and logging services include:

e Provide mechanisms to submit, collect, persistently store and report on audit data submitted
as events.

e Provide methods to check compliance of the events to the individual security service policies.
The events which the UCMS audit and logging services need to capture include;

e |dentity Foundation adding, modifying, deleting, reading user through CA eTrust Identity
Manager

e Identity Provisioning through the DLI IAM Framework

e Authentication (service consumer)

e Authentication (Middleware, WAS, COTS application products)

e Authorization and privacy (service consumer)

e Authorization and privacy (Intermediary servers like WAS Process Server & ESB)
e Authorization and privacy (Business Applications and Data Access services)

e Authorization and privacy (Text, Oracle and legacy Data)

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 191
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Message protection (ESB)

¢ Message protection (ESB to any J2EE service component)
o Data protection (Legacy Data, xml.config files, file systems)
e (indirect case) message protection (service)

The UCMS Auditing and Reporting Service is the result of the efforts to unify IBM Tivoli auditing
and reporting with the DLI IAM Framework, which consists of CA eTrust security products like
SiteMinder and Identity Manager with a Secure Token Service, and any federated identity
components.

For UCMS, the Auditing and Reporting Service for context auditing is defined as the process of
maintaining detailed, secure logs of critical activities in the UCMS environment.

This includes the following items:

e Security related critical activities (login failures, login success, unauthorized access to
protected resources, modification of security policy, non-compliance with a specified security
policy, service levels, and the health of security servers)

o UCMS Business-related critical activities wage record transactions, tax transactions, and
related accounting transactions.

o UCMS critical activities related to content management (updates and deletions of critical
documents: forms and letters, reports, reports on statistical analysis, wage records, tax data,
accounting records, and CWA transactions.)

e UCMS Role Based Access Control through delegated administration and Change
Management; especially changes made by administrators.

The UCMS Auditing and Reporting Service collects the audit data from the enforcement point as
well as from other platforms and security applications within the DLI UCMS environment.

In addition, the UCMS Auditing and Reporting Service provides access to subsidiary logs, log
consolidation, log tuning, and the use of logs for current operations, for planning, for compliance,
and for forensics.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 192
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

7.0 Operational Architecture

7.1 Introduction

This document illustrates the Operational Model for the Commonwealth of Pennsylvania
Unemployment Compensation Modernization System.

7.1.1 Identification

This document describes the operational model for the UCMS at the conceptual, specification
and physical level.

7.1.2 Description

This document provides a representation of the network of computer systems, their associated
peripherals and the systems software, middleware, and the application software they run.

The operational model includes:

Diagrams that show the topology and geographic distribution of the system, the definition of
the nodes (computer platforms) and network connections, and where and how users and
external systems interact with the system.

A detailed description of each node and identifies and classifies the software components
that run on the node. Components are grouped into deployment units for ease of placement.
The description includes the node’s availability, performance, security and other non-
functional characteristics.

A detailed description of the networks that connect the nodes, together with their protocol
layers and services.

A mapping matrix of deployment units to nodes, each deployment unit being a convenient
grouping of components from the software architecture.

A description of the systems management strategy, including decisions about centralized vs.
distributed managing stations, backup and recovery strategy, software distribution models
and approach, change control, configuration management, and other systems management
processes.

A description of middleware services and products and the key middleware choices (including
security, Object Request Brokers, etc.).

Descriptions of walkthroughs, which describe the flow of a business activity from a user all
the way through the system and back to the use, augmented by interaction diagrams, which
show the flow of messages between nodes.

The specified level refers to a detailed specification of a computer platform or network.
Technological limitations are fully taken into account but the detailed choice of technology is
not made.

The physical level refers to the specific types of computers, networks, and software that
make up the system.

The Operational Model develops from conceptual to specified, to physical, and at any one time,
different parts of the description may be at different levels.

As the Operational Model is developed, detail is added within and between levels of abstraction
and the network topology is restructured as the design passes from one level to the next.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 193
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

7.1.3 Purpose

Different parts of an Operational Model are used for different purposes at different stages of its
development.

At a conceptual level, an Operational Model is used:

e As an early basis for design reviews and walkthroughs, including confirmation that the
business problem is well articulated and that there is a viable IT solution.

e As away of dividing large problems so that each node can be worked on in relative isolation.

e As the basis for early analysis of non-functional requirements such as performance,
availability, and capacity, and including confirmation of the viability of a solution through
specification of the expected non-functional characteristics of nodes and components.

e To identify necessary technical, infrastructure, and other middleware components and
subsystems.

e As input to application design.

e To contribute to early estimates of the cost of the infrastructure to be used both for budgeting
and as part of the business case for the solution.

Later, an Operational Model at the specification level is used:

e To document the distribution of application and technical subsystems (deployment units) on
preliminary (conceptual or specified) nodes so they can ultimately be installed and run on
physical computer systems.

e As the basis for detailed design reviews and walkthroughs, prior to selecting products.

e As a detailed technical specification against which alternative products can be evaluated or
against which technology vendors can submit tenders.

e As the basis for detailed prediction of performance, availability, and other service level
characteristics

e As the basis for a check that all the necessary business and technical functionality has been
identified.

e To allow application developers to refine and confirm their architecture and designs based on
a detailed view of all the solution’s deployment units.

e As the basis for cost estimates of the required infrastructure.

An Operational Model at the physical level is used as a blueprint for the acquisition, installation,
and subsequent maintenance of the system.

The network design affects the application design, middleware selection, component placement,
systems management and overall operational system control.

The systems management information in the Operational Model documents how elements at
each location are managed and what extra systems management components and nodes are
needed at each location. Selection of a systems management model determines:

e The cost of operations management

e The cost of software distribution

e The complexity of system management tooling

e Potential availability of the IT system (i.e., its ability to satisfy the service level requirements)

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 194
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Middleware decisions effectively move functionality, which would otherwise be common to
several applications, into a set of shared services. These services are purchased or are part of
packaged applications.

7.2 System Topology Diagrams

This chapter describes the topology and geographic distribution of the UCMS system, the
definition of the nodes (computer platforms) and network connections, and where and how users
and external systems interact with the system.

Due to issues such as shared infrastructure, component upgrades, component migration to new
products, and other factors, the topology diagrams can change frequently. For this reason, the
reader is encouraged to obtain copies of the current topology diagrams from OIT, should there be
a need for specific and accurate details of as-is implementation at a specific point in time.

7.2.1 Physical Infrastructure Topology Diagram

This section illustrates the physical infrastructure topology for the UCMS environment which
includes the server, storage (SAN) and networking components.

7.2.1.1 Non-Production Physical Infrastructure

The following illustrates the physical infrastructure for the UCMS non-production environment.
Environments included are Development (DEV) and Component Integration Testing (CIT.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 195
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

UCMS Non-Production Physical Infrastructure

Network Switches Network Switches
Security Zone M Web Zone
IBM xSeries IBM xSeries Firewall
VMware Server Farm VMware Server Farm

Shared (D1 T,TF] Shared [D,I,T,TF]

[DLI Core

SAN Fabric A

—a

Usersal
(All)
IBM XIVs
&] SAN Fabric B
(e Ave Newok)
HMC IBM pSeries IBM xSeries
Partitioned Server VMware Server Farm
Legend
5 —{ Data Zone
L irewall Cluster
) Fiber SAN attached . Firewall
D Development Network Switches
| Component Integration Test . —
T Training Development / Component Integration Test / Training/
TR Testior Prodcton Test for Production

Last Modified 11/24/2014

Figure 7.2-1: Non-Production Physical Infrastructure

7.2.1.2 Production Physical Infrastructure

The following illustrates the physical infrastructure for the UCMS production environment.
Environments included are Production (PROD), and User Acceptance Testing (UAT). In addition,
with the implementation of clustering for local high availability and data replication, the
infrastructure within the UAT environment could be repurposed as the Disaster Recovery (DR)
environment. This environment is also used for Stress Load Testing.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 196
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

UCMS Production Physical Infrastructure
Internet —6

External
Users

Network Switches Network Switches %
Web-Security Zon: |-(w -Security BLL
eb-Security Zone eb-Security _m_:&

1BM xSeries
VMware Server Farm

0 OA Zone ()

(

Firewall
IBM xSeries

VMware Server Farm

SAN Fabric A Web Portal Servers

DLI Core —8

Internal
Users

[Site#T="DLi Harrisburg
i_and EDC Harrisburg

1BM DS8300
IBM XIVs & |® SAN Fabric B
(HcRewokd 5

IBM pSeries - 1BM ;SeﬂesF : - Network Switches Network Switches %
Partitioned Servers \ware Server Farm T =)
éﬁ | Web-Security Zone Web-Security BLL) _.,k,,c
Data Zone '}@—
“ I;”ewa" | 1BM xSeries 1BM xSeries Firewall
Network Switches: | VMware Server Farm VMware Server Farm
: |
Production |
|
|
|
| Network
|
|
|
|/BM DS8100,
IBM XIV SAN Fabric B
Legend |)
'-:'I Firewall Cluster :
B)- Fiber SAN attached HiC BM pSeries 1BM xSeries
P Production Sy St em T e St / Partitioned Server Discrete Servers %
)
S System Test Data Zone _\.“rr('
User Acceptance Test
u User Acceptance Test/ O
D Dt fecowey Disaster Recovery Netor s e
Last Modified 11/25/2014

Figure 7.2- 2: Production and UAT Physical Infrastructure

7.2.2 Logical/Functional Infrastructure Topology Diagram

This section illustrates the logical component infrastructure of the UCMS environment. The
following sections detail the logical placement of the individual server images, components and
deployment units within the appropriate network zones.

7.2.2.1 Development (DEV)

The goal of the DEV environment is to provide as simple an environment as possible to facilitate
rapid development and validation of the technology and design decisions that have been made.
All components are on a "flat" network with unrestricted communications between components.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 197
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

UCMS Development Hardware Infrastructure
(Functional)

Firewall

g(An)
‘
Managd CW

SRTest Bridgehead

Bridgehead
Firewall
4 4 4 <4
N ™~ N N
y S Ny SO &
File Server Identity MovelT IBM FileNet Business
Manager ~ Central FTP Obiects ‘
NS N N N
o o o o
SiteM CWO! AEM webMethdts Rational
LDAP Dispatcher Toolset
Last Modified 03/14/2016 Data ZO ne

Security Zone User Web Zone

MovelT

DMZ FTP

A

Publisher

///“//>

FileNet
DBMS

WAS / AEM DataStage Oracle

RMAN

Rational
DBMS

Oracle
ucMms
RDBMS

Figure 7.2- 3: Development Hardware Infrastructure (Functional)

7.2.2.2 Component Integration Testing (CIT)

The CIT environment introduces the project goals of developing a cross-project (e.g., with
CWDS) shared infrastructure and implementation of the general security architecture. The five

shared services are:

e Portal Services, implemented by AEM

e Enterprise Service Bus, implemented by webMethods
e Document Services, implemented by FileNet

e Security Services, implemented by SiteMinder

e Reporting Services, implemented by Business Objects

Portal Services are not shared with other projects at this time. The Portal implementation is based

within DLI and not shared at the OA Level.

To implement security, the implementation of the CIT environment is built to include the DLI

firewall infrastructure matching that required in the production environment. Additionally, secure

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

198

communications links between external as well as internal components, including authorized and
encrypted channels as necessary, are implemented within the CIT environment.

UCMS CIT Hardware Infrastructure (Functional)

Web Zone

(av

Security Zone
FileNet webMethods MovelT
DMZ FTP

RS
o
N
T S© S S e
dentity gjtentinder ~ Managed, CWOPA FileNet I JEL
Manager SRTest AD Bridgehead Content and App Dispatcher
and Bridgehead
§
0
N
N <S .
File Server MovelT CW Dl Adohe" EEA’\A‘?
Central FTP AD Process Manager~LiveCycle
\\
() S
N 0] &Y §
webMethots FileNet Business DataStage Oracle RMAN 8?’3";
Services Objects WAS / AEM SBRIE

Publisher
Data Zone

Last Modified 03/14/2016

Figure 7.2- 4. CIT Hardware Infrastructure (Functional)
7.2.2.3 User Acceptance Testing (UAT) and Production (PROD)

The user acceptance test (UAT) infrastructure extends that of the CIT environment by adding
availability solutions such as clustering for local high availability and data replication for Disaster
Recovery (DR). Additionally, the UAT environment is sized to be equivalent in capacity to the
production (PROD) environment to enable realistic load testing to be performed.

The PROD environment builds on UAT environment by adding the requirement that the recovery
site is physically distant from the primary production facility.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 199
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

’ UCMS UAT / PROD Hardware Infrastructure (Functional) ‘

Firewall

External

OA Zone

Idenity
Manager

SiteMinder

Wi

Security Zone

‘ ‘

Identity SiteMinder ~Managed, CWOP,
Manager SRTestAD Bridgehead
and Bridgehead

W

File Server MuveIT
entighE]P

User

(&

FileNet
Content and App.

s AdD
Pmcess ManageI veCy

webMethods ~ FileNet

Services

WAS | AEM
Publisher

Data Zone

Last Modified 03/14/2016

eb Zone

irewall @
©
FileNet

webMemuds MaveIT

ul S[#le

D.spamnev

04 W

FileNet

cle I DBMSI

DataStage Oracle RMAN UCMS

menmy SweMlnﬂev Managed

- e = === — -

Site

#1

Web Zone

g

FileNet webMethods Movs\T

l

Firewall Conwnl and App

Security Zone

oA
SRTestAD Bridgehead

and Bridgehead
cwo Ea
Business

File Servev MuveIT
Objects

| CemriITF'
Data Zone

D\spa!cher

FileNet ~ Oracle

PmcessManagevLIvecyce ﬁ ‘l

DataStage Oracle

webMethods FileNet

el WAS / AEM

Publisher

User Acceptance Testing

Site
#2

Figure 7.2- 5: UAT/PROD Hardware Infrastructure (Functional)

7.3 Node Description

This chapter describes in detail each node and identifies and classifies the software components
that run on the node. For convenience, components are grouped into deployment units for ease
of placement. The description includes the node’s availability, performance, security and other

non-functional characteristics.

7.3.1 IBM pSeries Hardware
7.3.1.1 Description

IBM pSeries servers are Enterprise-class general computing platforms which can run AlX and
Linux operating systems. The pSeries servers are based on 64-bit IBM POWER7™ processors
and leverage advanced virtualization technologies, like Micro-Partitioning™, Virtual I/0 and
Partition Load Manager. This allows DLI to increase the utilization of a single physical system to
save cost on hardware, software, energy, maintenance and space.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System

System Design and Blueprint - Updated April 2016

Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

200

7.3.1.2 Deployment Units
The table below illustrates the Deployment Unit which are hosted on the IBM pSeries hardware

Category / Level Conceptual

Specification

Physical

Console

Processing Process/Rules Engine IBM WebSphere IBM pSeries LPAR
Process Server
Extract, Transform and Load DataStage IBM pSeries LPAR
Data Database(s) Oracle IBM pSeries LPAR
Infrastructure Monitoring Tivoli Monitoring IBM pSeries LPAR
Job Scheduling $Universe IBM pSeries LPAR
Reporting Business Intelligence Business Objects IBM pSeries LPAR
Enterprise
Application J2EE Framework IBM Websphere IBM pSeries LPAR
Application Server
Hardware Hardware Management IBM HMC IBM HMC

Virtual 1O Server

IBM VIO Server

IBM pSeries LPAR

Operating System UNIX IBM AIX IBM pSeries LPAR
Backup/Recovery Server Image IBM mksysb IBM pSeries LPAR
Backup/Recovery
File Backup/Recovery IBM Tivoli Storage IBM pSeries LPAR
Manager
Database Backup/Recovery Oracle RMAN IBM pSeries LPAR
Management Content Management IBM FileNet IBM pSeries LPAR
Output Management Adobe Forms/Central IBM pSeries LPAR
7.3.2 IBM xSeries Hardware

7.3.2.1 Description

The IBM xSeries hardware solution is responsible for providing a hosting environment for
Windows-based applications. Complementing the IBM xSeries hardware platform is virtualization
technology provided by VMware. VMware Infrastructure (VI) delivers a responsive IT environment
- dynamic, efficient and available. Eliminating many of the constraints of traditional hardware,
VMware Infrastructure allows for the following:

¢ Implement Production Server Consolidation and Containment

e Provide advanced business continuity protection at a lower cost

o Deliver high availability for critical applications

e Streamline Software Test & Development

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016

Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

201

7.3.2.2 Deployment Units

The table below illustrates the Deployment Unit which are hosted on the IBM xSeries hardware.
Depending on the environment the image maybe on a dedicated xSeries hardware or a VMware

image.

Category / Level

‘ Conceptual

Specification

‘ Physical
IBM xSeries Server or

Infrastructure

Presentation Application Web Portal AEM VMware image
Processing Enterprise Service Bus | webMethods IBM xSeries Server or
(ESB) VMware image
FTP MovelT IBM xSeries Server or
VMware image
Infrastructure Virtualization VMware Virtual IBM xSeries Server or

VMware image

Virtual Machine Mgmt.

VMware Virtual Center

IBM xSeries Server or
VMware image

Authentication

Authentication Services

Identity Manager

IBM xSeries Server or
VMware image

Policy and Roles SiteMinder IBM xSeries Server or
Management VMware image
Active Directory Microsoft IBM xSeries Server or

VMware image

Reporting Reporting Business Objects IBM xSeries Server or
VMware image
Operating System Microsoft Microsoft Windows 2010 IBM xSeries Server or

VMware image

Management Content Management IBM FileNet IBM xSeries Server or
VMware image

Development Source Control IBM Rational IBM xSeries Server or
VMware image

Process Management IBM Rational IBM xSeries Server or

VMware image

7.4 Connection Descriptions

This chapter describes in detail the networks that connect the nodes, together with their protocol

layers and services.

7.4.1 Network Switches

Network switches are responsible for ensuring connectivity between servers within the same
location or datacenter. They provide high speed access between nodes for data exchange and
communication of components in the infrastructure. These switches provide connectivity utilizing
the TCP/IP (Transmission Control Protocol/Internet Protocol) at speeds varying from 100
Megabits per sec. up to 1 Gigabit per sec. In addition to providing connectivity functions, the
network switches are also capable of providing high availability and failover functions between
multiple devices — which ensures continuous uptime for the networking environment.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016

Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

202

Advanced features of these switches include:

e Redundant Power and Cooling components
e Redundant Supervisory Modules

e Virtual LAN configuration (VLAN)

e Switch Port Security

e Performance Management and Reporting

The UCMS environment consists of networking routers and switches and firewall equipment
including a firewall cluster controller and switches. The models utilized are installed and
maintained by DLI, and the exact configuration can change as part of the shared infrastructure.
The reader is encouraged to contact DLI networking personnel for the as-is equipment and
configuration information if needed.

7.4.2 Network Firewalls and Routers

Network firewalls are responsible for ensuring security communication boundaries within the
networking infrastructure. Not only do they control communication between nodes but also ensure
appropriate and secure communication between deployment units and components. These
devices are specifically designed for high network bandwidth throughput without compromise to
performance latencies. In addition to providing secure communication, these devices also

perform inter-site routing functions. With support of routing standard protocol such as RIP, RIPv2,
OSPF, DVMRP, IGRP (Cisco) and BGP — these devices ensure intelligent and efficient
connectivity between different sites and locations.

In addition, these devices also provide for high availability and load balancing capabilities, which
ensure continuous connectivity between sites and locations.

7.4.3 Storage Area Network (SAN) Switches

Storage area networks (SAN) provide the facility to connect nodes/servers to the shared storage
environment. These devices are responsible for ensuring secure and efficient access to
application data stored on an external (to the node) shared storage devices. These switches
provide connectivity utilizing protocols such as Fibre Channel (FCP), FCIP, iSCSI and Gigabit
Ethernet speeds varying from 1 Gigabit per sec. up to 4 Gigabit per sec. In addition to providing
basic storage connectivity, these switches also facilitate for long-distance replication, backup, and
recovery. Atthe core of the DLI Storage Area Network are solutions are Cisco switches.

7.5 Node-Deployment Unit Mapping

This chapter contains matrices showing the mapping between deployment units and nodes. A
deployment unit is a convenient grouping of components from the software architecture. By
convention, nodes are shown in the columns (with the column headers as the node names) and
the deployment units as rows.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 203
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

7.5.1 Node-Deployment Units

The following table illustrates the mappings of Nodes, Component and Deployment units for the

UCMS environment.

Component Sub-Component Platform Deployment Unit
Adobe LiveCycle Forms Adobe LC Forms Application pSeries | Adobe

AEM Portal pSeries | Portal

AEM Dispatcher xSeries | Application

AEM Publisher pSeries | Application

Business Objects Enterprise BOE Server xSeries | Bus Objects

Business Objects Enterprise Oracle DB pSeries | Oracle

Business Objects Enterprise WAS Application pSeries | WAS

DataStage DataStage pSeries | DataStage

FileNet FileNet Database pSeries | Oracle

FileNet FileNet Content Server xSeries | FileNet Content Server
FileNet FileNet Content Collector xSeries | FileNet ICC

FileNet FileNet Application xSeries | WAS

CA SiteMinder SiteMinder Policy Server xSeries | SiteMinder Policy Server
CA Identity Manager Identity Manager xSeries | Identify Manager
Active Directory Active Directory xSeries | Active Directory
RMAN RMAN pSeries | RMAN

UCMS Application UCMS Oracle DB pSeries | Oracle

UCMS Application UCMS WAS Application pSeries | WAS

VIO Servers VIO pSeries | Data Zone VIOs
Rational Rational DB xSeries | Rational DB

Rational Rational VOB xSeries | Rational VOB

Rational Rational Web xSeries | Rational Web
webMethods webMethods Broker xSeries | webMethods Broker
webMethods webMethods Integrator xSeries | webMethods Integrator
webMethods webMethods Proxy xSeries | webMethods Proxy
BPM BPM Database pSeries | Oracle

BPM BPM Application pSeries | BPM

7.6 Middleware

This section describes the middleware services and products and the key middleware choices.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 204
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

ut and Printing Service

lications
dobe Lifecycle Forms

AEM Portal
stem Management Services

IBM Tivoli Omnibus. IBM Tivoli Monitoring
IBM Tivoli Composite Application Manager

IBM Director

9]
2
@
n
c
8
I
L
o
Q.
<
o
@
<
o8
n
9
s
=
o

ransaction Services
BIM Business Process Manager

indows 2010 Server

ebMethods Broker

ebMethods Integration
Corticon Rules Engine

A

SiteMinder Policy Server
Business Objects Enterprise
IBM FileNet Content Server

Identity Manage
Content Services

File Services
Object Services

API
External Environment

7.7 Walkthroughs

Section 9.2 describes the flow of various business or support activities from a user all the way
through the system and back to the user. The purpose of this is to illustrate selected interactions
between application nodes, to demonstrate the integration of core application components.
Please note that the walkthrough scenarios were developed for the proof of concept
environments, and may not necessarily represent the final application scenarios. Details on
application scenarios are available in the module design documents described in earlier sections.

8.0 Systems Management Architecture

8.1 Introduction

DLI's Office of Information Technology considers systems management part of its shared

component infrastructure. The UCMS system supports and leverages the existing DLI systems

management infrastructure and strategy. OIT’s current systems management strategy requires

the architecture to support several customer service goals. These include, but are not limited to,

the following:

e Continue to establish and leverage common processes with appropriate levels of automation
to ensure the effective, efficient delivery of IT services

e Reduce total department operation costs through effective use of improved processes and
technology

¢ Improve service availability by proactively identifying and resolving conditions that could lead
to potential problems (monitor, collect, evaluate and report enterprise events)

e Enhance the functionality, integration, automation and scope of coverage for Server Farm
operations and network processes

¢ Incorporate quality assurance on data and performance standards

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 205
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

e Increase the scope of common IT services to program areas

e Increase management control to leverage information, common processes, skills, personnel
resources and automation tools.

e Review, consolidate, and document enterprise processes
e Align data fields towards a single repository concept

e Provide instructional documentation and conduct comprehensive training for program areas
employees and OIT technical staff

e Incorporate customer service satisfaction feedback reporting capabilities
e Monitor compliance with service level agreements (SLA’s)

DLI currently has multiple systems management environments. Each in varying degrees supplies
a wide array of systems management functions using multiple vendors’ software. The Tivoli
software is used primarily for monitoring and ServiceNow for asset, change and incident/problem
management. The processes that are followed to support the systems management architecture
are defined in the Systems Management Plan work product.

Following is a high-level diagram of the major Tivoli tools and flows of the DLI Enterprise Tivoli
Architecture that is used.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 206
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Alarm Point

Change
Requests

Asset
Management

Tivoli Omnibus

Tivoli Enterprise
Portal

Historical Analysis
Reportirg

| T

Tivoli Data
Warehouse ———»

IBM Tivoli Monitoring Agents/
Infrastructure

Netiew $U et @Eg ﬁgg

0S AIX & —
Windows Oedk WebSphere

NSV

Transaction
Performance

Last Modified 11-24-2014

Figure 8.1- 1: DLI Enterprise Tivoli Tools for UCMS

As shown in the above figure, IBM Tivoli Monitoring management agents are deployed on the
servers within the UCMS infrastructure. Situations are defined through a combination of metrics
and thresholds to trigger, notify and solve problems. The alerts are then sent from the various
monitoring management agents to the DLI Tivoli Omnibus. Omnibus correlates and filters
duplicate or associated events. Based on the criticality of the events trouble tickets can be
opened in DLI's ServiceNow system and assigned to the appropriate support group defined in
ServiceNow. Note that not all events passed into ServiceNow open tickets.

8.1.1 Management Consoles

The systems management environment can be observed and managed through several views:
e Tivoli Enterprise Portal — graphic representation of monitored data

e Tivoli Omnibus — displays all events collected

e Tivoli NetView — graphic display of availability (up/down) of components in the environment

e ServiceNow — displays change tickets, change tasks, and event/help desk tickets created
automatically by an event or entered by help desk personnel.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 207
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

8.1.2 Management Agents

The agents (referred to as managed systems) are installed on the system or subsystem requiring
data collection and monitoring. The agents are responsible for data gathering and distribution of
attributes to the monitoring servers, including initiating the heartbeat status. These agents test
attribute values against a threshold and report these results to the monitoring servers. The tests
are called situations.

Tivoli Enterprise Management Agents are grouped into five categories:

1. Operating System (OS) Agents - Operating System Agents retrieve and collect all monitoring
attribute groups related to specific operating system management conditions and associated
data. There are three primary operating system agents that are leveraged in the UCMS
design:

e Windows OS Agent
e UNIX OS Agent

e AIX Premium Agent
e Log File Agent

e Universal Agent - a special agent that leverages a full Application Programming Interface
to monitor and collect data for any type of software.

2. Application Agents - Application Agents are specialized agents coded to retrieve and collect
unigue monitoring attribute groups related to one specific application. The monitoring groups
are designed around an individual software application, and they provide in-depth visibility
into the status and conditions of that particular application. There is one primary application
agent that are utilized in the UCMS design:

o WebSphere Application and WebSphere Process Servers

3. Composite Application Agents - allows monitoring and analysis of application transaction
response time. It provides statistics of response time using instrumentation and robotic
means and allows analysis and break down of response time into individual components to
quickly pinpoint a response time problem. It can decompose transactions from robotic means
simulating end users, tracking its execution in J2EE application servers.

e ITCAM for Response Time Tracking

4. Application Diagnostics — provides a view the health of the WebSphere Application and
Process server applications. This enables in-depth diagnostic information for specific
application requests to identify the root cause of problems.

e ITCAM for Application Diagnostics

5. Hardware Agents — provide specialized monitoring for the pSeries servers.
e HMC — Hardware Management Console
e CEC - Central Electronics Complex

e Virtual I/O (VIOS) Premium Agent

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 208
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Below is a table showing the implementation of the management agents by environment.

Environment | Windows Unix Database RTT —any Application Hardware
only only only server that Diaanostics
Servers Servers Servers the 9
transaction
traverses
Development X X X X
CIT X X X X
TRN X X X X
TFP X X X X
UAT X X X X X X
PROD X X X X X X

8.2 Systems Management Component Model

L&l Systems Management Logical Diagram
wiPorts =
UCMS UAT Servers (WRT and ITCAM for AD) HI
’i i Tae
Tec Ahgtetner
Mogoooeay 103238 Paniry
nise -_I
Q

3

:

eps

918 1o TENS

P

= TENA G
j : I
! Cuwwrny
= e
= " 7203488

Fovessy
172183018

TCAM BAD

e I4724

b, w
b
- DAL oL
Do
Wirdows | 5| & F
1 oniy = E =
| = = =
1 || 1
¥ Tow
o34 LR

Harrisburg Intemet Web Zone (]

{ 1
I

Figure 8.2- 1. Systems Management Architecture

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 209
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The architecture to support the server and transaction monitoring requirements for UCMS is
described below. IBM Tivoli Monitoring software product supplies the following components:

e Tivoli Enterprise Monitoring Server (TEMS)

e Tivoli Enterprise Portal Server (TEPS)

e Tivoli Enterprise Portal (TEP)

e Tivoli Enterprise Management Agent (TEMA)
e Tivoli Data Warehouse (TDW)

IBM Tivoli Composite Application Manager for Response Time Tracking (ITCAM for RTT)
provides the following components:

e Management Server

e Store and Forward Agents

e Management Agents

IBM Tivoli Composite Application Manager for Application Diagnostics (ITCAM for AD)

e Management Server

e Management Agents

The existing systems management environment provides these monitoring solution components:
e Tivoli Omnibus

e ServiceNow

Note: TMR and Tivoli Enterprise Data Warehouse (TEDW) and Tivoli gateways exist within the
DLI infrastructure but are not used to manage the UCMS application.

8.3 IBM Tivoli Monitoring Components

8.3.1 Enterprise Monitoring Server (TEMS)

The TEMS (referred to as the monitoring server) is the initial component which begins building
the IBM Tivoli Monitoring Services foundation. It is the key component on which all other
architectural components depend directly. The TEMS acts as a collection and control point for
alerts received from agents and collects their performance and availability data.

The TEMS is responsible for tracking the heartbeat request interval for all of the Tivoli Enterprise
Management Agents connected to it.

The TEMS stores, initiates, and tracks all situations and policies. The TEMS is the central
repository for storing all active conditions and short term data on every Tivoli Enterprise
Management Agent. Additionally, the TEMS is responsible to initiate and track all generated
actions that invoke a script/program on the Tivoli Enterprise Management Agent.

This Hub/Remote interconnection provides a hierarchical design allowing the Remote TEMS to
control/collect its individual agent status and propagate the agent status up to the Hub TEMS.

This mechanism allows the Hub TEMS to maintain an infrastructure-wide visibility of the
environment. The view gets passed to the Tivoli Enterprise Portal Server for pre-formatting,
ultimately displaying within the Tivoli Enterprise Portal client.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 210
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

When security validation is configured, the Hub TEMS is the monitoring server to manage
operating system level userIDs.

8.3.2 Tivoli Enterprise Portal Server (TEPS)

The TEPS (referred to as the portal server) is a repository for all graphical presentation of
monitoring data. The portal server database also consists of all the user ids and user access
controls for the monitoring workspaces. The TEPS provides the core presentation layer which
allows for retrieval, manipulation, analysis, and pre-formatting of data. It manages this access
through user workspace consoles. The TEPS keeps a persistent connection to the Hub TEMS,
and can be considered a logical gateway between the Hub TEMS and the Tivoli Enterprise Portal
client. Any disconnection between the two components immediately disables access to the
monitoring data used by the Tivoli Enterprise Portal client.

8.3.3 Tivoli Enterprise Portal (TEP)

The TEP client (referred to as the portal client) is a Java-based user interface which connects to
the TEPS to view all monitoring data collections. It is the user interaction component of the
presentation layer. The TEP brings all these views together in a single window so that it can be
seen when any component is not working as expected. The client offers two modes of operation:
a Java desktop client and http browser.

The following products currently have integrated interfaces into TEP:

¢ IBM Tivoli Monitoring NetView

e IBM Tivoli Omnibus

e IBM Director

Products that may be added during the next phases of DLI's Tivoli deployment:
¢ IBM Tivoli Monitoring for Cluster Managers

e IBM Tivoli Composite Application Manager for WebSphere

e IBM Tivoli Composite Application Manager for SOA

¢ IBM Tivoli Monitoring for Active Directory

e |IBM Tivoli Monitoring for Messaging and Collaboration

8.3.4 Tivoli Enterprise Management Agent (TEMA)

The agents (referred to as managed systems) are installed on the system or subsystem requiring
data collection and monitoring. The agents are responsible for data gathering and distribution of
attributes to the monitoring servers, including initiating the heartbeat status.

The agents test attribute values against a threshold and report these results back to the
monitoring servers. An alert icon is displayed in the TEP when a threshold is exceeded or a value
is matched. These tests are called situations.

8.3.5 ITM Firewall Gateway Feature

The Firewall Gateway feature in IBM® Tivoli® Monitoring V6.1 enables additional end-to-end
connectivity options for use in environments with strict security policies concerning TCP/IP
connection through firewalls. It allows the ITM V6.1 components to communicate with each other
through a single port thus eliminating the need to open a range of ports.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 211
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

8.3.6 Tivoli Data Warehouse (TDW)

The Tivoli Data Warehouse is the database storage that contains all the historical data collection.
A Warehouse Proxy must be installed, to leverage the TDW function within the environment. In
large scale deployments, a Tivoli Data Warehouse can be shared between monitoring
installations.

8.4 ITCAM for Response Time Tracking Components

8.4.1 Management Server

The ITCAM (IBM Tivoli Composite Application Manager) management server provides
centralized management and employs Web services to communicate with management agents at
regularly scheduled intervals, called the upload interval. The default upload interval is once an
hour. The management server includes the following pieces:

e The user interface provides a way to interact with the monitoring software. The user interface
is accessed through a Web browser.

o Real time reports display collected performance data so the performance and availability of
Web sites and Microsoft Windows applications can be assessed. The management server
keeps a persistent record of the data collected by management agents for real-time and
historical reports.

e The event system notifies in real time about the status of monitored transactions through
reports, e-mail notification, events sent to the IBM Tivoli, or the simple network management
protocol (SNMP). Script can be run to respond to an event. The system generates application
events when performance thresholds exceed or fall below acceptable limits. It generates
system events for system errors and notifications. Recently generated events can be viewed
at any time.

e The Database stores monitor information, events, instance and hourly average monitoring
data, and other information.

8.4.2 Store and Forward Agent

The store and forward agent provides bidirectional support for a secure connection from the
management agents to the management server through a firewall by:

¢ Enabling point-to-point connections between management agents and the management
server.

¢ Enabling management agents to interact with Store and Forward as if Store and Forward was
a management server.

¢ Routing requests and responses to the correct target.
e Supporting SSL communications.

e Supporting one-way communications through the firewall.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 212
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

8.4.3 Management Agents

The management agents identify transactions that might need monitoring, collect performance
data by running regularly scheduled listening and robotic monitors, and send generated events to
the management server. Each listening and playback component is instrumented to retrieve data
using ARM standards.

8.5 ITCAM for Application Diagnostics Components

8.5.1 Management Server

The management server is a distinct component of ITCAM (IBM Tivoli Composite Application
Manager) for Application Diagnostics. It communicates to the Data Collectors within the
WebSphere and J2EE Agents, and provides detailed diagnostic information through its user
interface.

8.5.2 Management Agents

The Agent for WebSphere Applications component is installed on the WebSphere Application and
Process servers in the UAT and Production environments.

8.6 Existing Solution Components

8.6.1 Tivoli Omnibus

The Tivoli omnibus is the event repository and correlation engine. Monitors are activated to
“watch” the console for messages regarding the status of hardware components, operating
systems, data base thresholds and application errors. Messages are collected here from the
distributed monitors and categorized by DLI's Omnibus server as critical, warning, or
informational class alerts. Critical alerts for UCMS can be customized to alert an operator that
action must be taken. For example, an alert could be scripted to include the actions to be taken
upon the appearance of the alert — such as “call AIX technical on call person”, or “call the on call
DBA”. This type of functionality would need to be developed and implemented at DLI. It is the
responsibility of operations staff to respond to all alerts that appear on the Omnibus console,
clearing a warning, noting the alerts that are fatal or critical and performing the appropriate
actions.

Problem tickets are automatically generated when a critical Tivoli event is received by the
Omnibus and forwarded to the ServiceNow system. Based on the information received,
ServiceNow either opens a new or updates an existing problem ticket. If an update is made to
the ticket, ServiceNow can also update the Omnibus event with the ticket’s status change.

8.6.2 IBM Tivoli NetView

The IBM Tivoli NetView component is an SNMP-based monitor used to check the up/down status
of infrastructure devices, to gather network statistics such as bandwidth utilization and packet
errors, and to process and forward error notifications called SNMP traps to Tivoli. It fulfills the
UCMS network monitoring requirements in these areas.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 213
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

8.6.3 ServiceNow

For the purpose of this architecture, the ServiceNow suite is treated as a single component that
provides trouble ticketing, asset management, and change management functionality to DLI.

8.7 Backup and Recovery

The UCMS system leverages the existing DLI Server Farm Storage and Backup/Recovery
architecture. Standard DLI enterprise retention policies and backup processes are used. Any
deviation to these policies requires an exception request to be submitted through the UCMS
Technical Change Control Process.

Tivoli Storage Manager (TSM), already installed at DLI, currently protects data from hardware
failures and other errors by storing backup and archive copies of data on offline tape storage.
Backups are copies of active online data which are stored on offline storage, both on-site and off-
site for disaster recovery purposes. Should an online storage device fail, a data error occurs, or
someone accidentally deletes a file, the offline copy of that data can be quickly copied (restored)
to online storage. These restores can be requested via the ServiceNow change management

process.
HBG DS8100 (ESS3)
UCMS pSeries
Servers . X
Cisco 9509 Director
HBG XIV-1, XIV-2,
Fabric A
L
A HBG DS8300
N \ ‘
Fabric B 3494 Tape Library
3592 J Drives
UCMS xSeries . .)
Servers Cisco 9509 Director

Figure 8.7- 1: DLI Backup Environment

8.7.1 Backup/Restore Strategy

There are five key areas outlined below that comprise the backup/restore strategy for the UCMS
system. They include AlX system backups, Windows system backups, Incremental backups, and
Oracle Database backups, and Disaster Recovery management.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 214
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

8.7.1.1 AIX System Backups

The purpose of a system backup is to recover the operating system in the event of a complete
server failure and to recover servers during a disaster recovery. The current DLI architecture
uses AIX Network Installation Management (NIM) to provide efficient and standardized AIX
installations, software upgrades, and Operating System backups and restores to be managed
from a centralized server. NIM provides the following functions:

e Installation of new servers
e Cloning of existing servers
e Performing AIX Migrations and applying fixes to existing servers

o Backup/Restore existing server operating systems to a centralized backup server (NIM
server)

Weekly system backups are made on all AlX servers utilizing NIM. The most recent system
backup remains online on the centralized backup server’s disk. Weekly tape backups of the
centralized backup server are made to both a high speed tape drive, and also to TSM. A single
set of these images remains off-site at VRI.

8.7.1.2 Windows System Backups

UCMS leverages the DLI implementation of the TSM incremental backup system which allows full
Bare Metal Restore of Windows server systems. After a base Windows server operating system
is built and the TSM client is installed, full data recovery is performed, followed by restoration and
merging of the Windows server registry, both using TSM. A restart of the server allows Windows
to discover the changed server components and install the appropriate drivers. Reconfiguring the
TCP/IP addresses completes the Bare Metal Restore. This methodology has been used to fully
recover Windows servers to both similar and dissimilar equipment.

8.7.1.3 Incremental Backups

Tivoli Storage Manager has the unique ability to manage data availability without requiring
periodic full-system backups. TSM'’s incremental, progressive backup capability eliminates the
need for redundant, full-system backups while providing the ability to support the UCMS recovery
scenarios.

TSM incremental backups are made of all non-database files, as is a standard at DLI today.
Daily automated schedules will continue to backup all non-production and production servers and
include all files that have changed since the previous night’s backup (except selected temporary
files and database related files). Daily disaster recovery copies can be made.

The DLI architecture seeks to provide the UCMS system with the flexibility to avoid the
unnecessary movement of redundant data across the network; as a result, the IBM solution
provides consistent and quick recovery services from a centrally managed facility. The
incremental-only paradigm reduces the additional CPU load on the client servers and additional
network load by significantly reducing the amount of data that needs to be backed up in order to
meet backup objectives.

UCMS can restore files in many different ways. For example, files or groups of files can be
automatically restored from the most recent version, a previous point in time, or one that was five
(5) versions old.

8.7.1.4 Oracle Database Backups

TSM for Databases are used to backup all Oracle databases. Daily RMAN incremental backups
(controlled by DLI DBAS) will continue to be used.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 215
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

8.8 Change Control and Configuration Management

In collaboration with DLI, the existing DLI Change Control and Configuration Management
processes are being refined to support the UCMS Production Environment and provide a
template for use with other applications at DLI requiring high availability. Change control and
configuration management in this section refers to the technical infrastructure environment not
the application environment.

Change and Configuration Management does not exist in isolation. It has functional
dependencies on other systems management processes such as Asset Management and
Problem Management. By developing close interfaces with these processes the data accuracy of
the configuration data is improved.

e Change Management provides the interface to identify authorized changes to configuration
Items and baselines. This process involves the planning, testing, validating and documenting
changes that affect hardware and software components in the UCMS Environment.

e Configuration Management provides the ability to identify, capture and organize key
infrastructure configuration information, to provide accurate information to multiple processes
and to maintain the data so that it remains current. Configuration changes are initiated by a
change request, the result of a problem/incident ticket or a help desk ticket.

¢ Asset Management identifies the costs, contracts, and purchase/lease data associated with
assets and Configuration Items (CIs). There are many data areas that overlap with
Configuration Management. In an integrated process, linking the two data repositories and
allocating the redundant data elements to a single repository addresses the overlap. The
configuration repositories and asset repositories are currently not completely integrated into a
single repository at DLI. The UCMS systems leverages the existing repositories in place at
DLI.

e Problem Management provides the interface to identify those Cls changed to resolve a
problem. Configuration Management provides Problem Management with data that can
reduce problem resolution times.

The following diagram illustrates the ITIL (Information Technology Infrastructure Library) process
for change and configuration management. ITIL is a process-based methodology that delivers a
set of IT service management best practices.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 216
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Asset Problem

Management DB Management Management
Data Data
Service Clearcase
Now

Figure 8.8- 1: DLI Change and Configuration Management Environment

All changes to the environment are initiated and controlled through the DLI ServiceNow system.
This happens in four ways:

1. An event created out of Tivoli Omnibus that requires a configuration change to resolve the
problem.

2. A change request initiated by DLI or the UCMS team, including all configuration changes

3. Acall to the LINKS help desk creating a problem ticket that requires a configuration change
to resolve the problem.

4. ServiceNow tickets are created from selected Omnibus Events.

All changes, events and problems to the environment are processed through the DLI ServiceNow
system using ServiceNow internal workflow. Updates to configurations that are not reflected in
the asset database is reported to DLI for manual updates in DLI configuration spreadsheets.

8.9 Performance and Capacity

Performance and Capacity Management are two critical processes that work together to see that
performance-oriented service levels are attained each day and that sufficient, cost-effective
capacity is available to meet UCMS business and application growth requirements.

Tivoli Enterprise Management Agents are configured on each server with an appropriate set of
performance situations, capturing actual capacity (e.g., throughput) and performance (e.g.,
response times) data. In addition Google Analytics is configured to capture user and logon data.
Examples of data that are captured include, but are not limited to:

e CPU utilization

e Memory utilization

e Transactions

e Transaction response time

o Number of logons and concurrent users

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 217
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

In real time, events are triggered and sent to Tivoli. Critical events are forwarded on to
ServiceNow and a problem ticket opened and assigned.

Tivoli Data Warehouse is the common data repository to store actual performance and capacity
results. This repository is used to develop reports for trend analysis, capacity planning and to
assist in root cause analysis to determine pro-active steps to avoid interruptions to committed
service levels.

There are four major components that make up the infrastructure for the Tivoli Data Warehouse.

e The monitoring agents: These are responsible for the collection of the detailed metric data
from a monitored system or application.

e The Tivoli Warehouse Proxy: This agent is responsible for receiving this detailed metric data
from the agents and inserting it into the Tivoli Data Warehouse.

e The Tivoli Summarization and Pruning agent: This agent is responsible for summarizing the
detailed data within your Tivoli Data Warehouse and pruning data that is no longer required.

e The Tivoli Data Warehouse: This is the data warehouse itself that is responsible for storing
and providing the detailed and summarized data for all captured agents.

8.10 Other Systems Management Processes

Multiple integration points exist between the processes that exist in IT Operational Management.
The following figure gives a high-level overview of the integration points that exist between the
various processes.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 218
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

ESM Process Integration
y
Event Change «
Help Desk/ .
Management » < » Management |4— Security Process
System Problem Process s
gl
Y Release/Software
Distribution 1
Process
, !
Asset/
Configuraiton
Management
Process
v
Backup/Recovery <
Process
i/lear::;elfgg Performance/
\ .
Process > MCapacny t
Availability EUEEE
Management 1 Process
Process
< A
Figure 8.10- 1: ESM Process Integration
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 219

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

9.0 Appendices

9.1 Glossary of Acronyms

Acronym \ Acronym Description

API Application Programming Interface

ASA Application Server Agent

ASM Automatic Storage Management

BIOS Business Innovation & Optimization Services
BPEL Business Process Execution Language
BPEL4AWS Business Process Execution Language for Web Services
CBE Common Base Event

CBL Common Business Library

CIFS Common Internet File System

COTS Commercial off-the-shelf software or hardware product
CRM Customer Relationship Management

CRUD Create, Read, Update, Delete

cXML Commerce XML

DHCP Dynamic Host Configuration Protocol

DI Dependency Injection

DMZ Demilitarized Zone

DNS Domain Name System

EAD4J Enterprise Application Development for Java
ebXML Electronic Business using XML

EDI Electronic Data Interchange

EJB Enterprise Java Bean

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

ESP External Service Provider

ETL Extract, Transform, Load

FTP File Transfer Protocol

FTPS FTP over SSL

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS HTTP over SSL

IDOC Intermediate Document

10C Inversion of Control

ISP Internal Service Provider

ITIL Information Technology Infrastructure Library
J2EE Java 2 Platform, Enterprise Edition

JAXB Java Architecture for XML Binding

JCA Java Connector Architecture

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

220

Acronym Acronym Description

JDBC Java Database Connectivity

JDK Java Development Kit

JMS Java Message Service

JMS Java Messaging Service

JMX Java Management eXtensions

JNDI Java Naming and Directory Interface

JSF Java Server Faces

JSP Java Server Pages

JSR Java Specification Request

JSTL Java Server Pages Standard Tag Library

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LPAR Logical Partition

LTPA Lightweight Third Party Authentication

MAN Metropolitan Area Network

MDB Message Driven Bean

MOM Message-Oriented Middleware

MQ Messaging Queuing

MVC Model View Controller

NFR Non-Functional Requirement

OAG Open Applications Group

OCR Optical Character Recognition

ODMG Object Data Management Group

OLTP OnLine Transaction Processing

OMI Open Management Interface

PKI Public Key Infrastructure

POJO Plain Old Java Object

RBAC Role Based Access Control

RPC Remote Procedure Call

S/MIME Secure / Multipurpose Internet Mail Extensions

SAML Security Assertion Markup Language

SAN Storage Area Network

SCA Service Component Architecture

SDK Software Development Kit

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SOMA Service-Oriented Modeling Architecture

SM SiteMinder

SPS Secure Proxy Server

SSL Secure Sockets Layer

STS Secure Token Service

SWAM Simple WebSphere Authentication Mechanism
Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 221

System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Acronym Acronym Description

TSL Transport Layer Security

UDDI Universal Description, Discovery and Integration
UML Universal Modeling Language

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAI Web Accessibility Initiative

WAN Wide Area Network

WAR Web Application Archive

WAS WebSphere Application Server

WCAG Web Content Accessibility

WSDL Web Services Description Language

WS- Web Services Interoperability Organization
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

XSD XML Schema Definition

XSL eXtensible Stylesheet Language

9.2 Business and Support Walkthroughs

9.2.1 Business Walkthroughs

As depicted in the figure below, this section provides a walkthrough of various core components,
including:

e The webMethods Enterprise Service Bus

¢ FileNet document and image management

e Security authentication and authorization (SiteMinder)

e User Interface (web Portal)

e InfoView (Business Objects)

e Task Management (IBM Business Process Manager)

e Business Roles (Corticon Rules Engine, a WebSphere application)

e Application Integration (WebSphere Application Server and J2EE framework)

e Output Management (Business Objects, Adobe)

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 222
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

Generate Image

<) & Index
Documents () Authentication

(DOR) (SiteMinder)
1
1
Process h 4
Image Portal
(FileNet) HomePage
T (Aqualogic)
|
ntake Claim App Process
Process Server; ¢ ¢
| ; -
e m e — e — , TaskList Portlet InfoView Portlet
: \ (J2EE Framework) (Business Objects)
Create Case Process I | -
Process Server 1 i H
|
\ | | L
1 1 ! ! |
fmmenes 2emeee 3 . : v v ,
v v y v v
Man:\gzl:nent Image Retrieval Report Generation
Associate Associate (FileNet/J2EE) (Business Objects
Szl e Gl Create Claim Party to Document to (Process Server)
Worker Worker d 5
Claim Claim
T T
+ +
Web Services vialJ2EE Framework i
1 i
|

v v
Determine Generate
— —ESB-p Claim Type Notice
(Corticon) (Adobe)

Figure 9.2- 1: Business Walkthroughs

Please refer to this drawing as part of each walkthrough. Several generic examples are provided,
showing the user authorization, correspondence viewing, and other tasks. Details of other
walkthroughs can be found in the Use Case documents for the corresponding business module.

9.2.1.1 Walkthrough 1 — Workflow Task list

This second walkthrough discusses the Workflow Task List application service. The following
diagram depicts the steps taken throughout this process.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 223
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

q o SiteMinder/Portal User Login
Workflow Task List « Portal Display Workflow Task
e Process Server Workflow Management
e J2EE Framework using services thru
webMethods
=
(]
T "
= Authenticate User
=
Q
=
(7]
~
.2
— O " .
T O Authorize User for Display User Tasks List Task Details
g # Portlet —» Tasks Displayed |———>| User Select Tasks Displayed ——>»| Complete Task
=
s o
g
— A, A,
Ecus
o w Display User Format Tasks List Format Task
< % ﬁ c% Tasks for Display CTEE PR Details for Display CoIRE R
S >0 E
B3 n>ag
s
[T
—~
%) y k.
B
o< Get Tasks List Get Task Details Complete Task
n ‘q'j Service Service Service
w=
e}
[%)
g
A A
29~
R
= 8 q>3 Get Tasks List Get Tasks Details Complete Task
<35 c
520
2 awn
=

Figure 9.2- 2: Walkthrough 1

The following nodes are involved in this process:

e The Enterprise Service Bus (webMethods Integration Server)

o WebSphere Application Server, J2EE Framework, and associated applications
e WebSphere Process Server

e Portal Server

e SiteMinder authentication and authorization services

The scenario is defined as follows:
1. An application user attempts to access the UCMS application service by entering the
appropriate URL into a browser.

2. The SiteMinder server intercepts the attempt and challenges the user to present appropriate
credentials (user id, password, PIN, etc)

3. If SiteMinder determines that the user is authentic, it authorizes the user to invoke the portal
service (on the web Portal Server), and passes the authorization information to the portal.

4. The portal attempts to display the user task list by calling the Display User Tasks application
from the WebSphere Application Server J2EE Framework.

5. The J2EE application invokes the Get Task List service from the webMethods Integration
Server ESB.

6. The WebSphere Process Server gets the task list and returns it to the ESB, which forwards
the results to the application on the WebSphere Application Server.

7. The application formats the task list for display, and returns this information to the portal
server.

8. The portal renders the task list in the user interface (portlet in the browser).

9. The user selects a task by clicking on it.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 224
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

10. The portal sends the input to the J2EE application, which invokes the Get Task Details
service via the ESB.

11. The ESB invokes process server to get and return the task details.

12. The ESB forwards the task details to the application.

13. The application formats the task details for display and sends this information to the portal.
14. The portal renders the task details in the user interface.

15. The user completes the task in the portlet.

16. The application invokes the Complete Task service via the ESB.

17. The process server marks the task as complete.

9.2.1.2 Walkthrough 2 - View Stored Image

This second walkthrough discusses the View Stored Image application service. The following
diagram depicts the steps taken throughout this process.

5 ¢ Portal Display Image
POC: Portal Workflow Doc Mgt « FileNet retrieve Image

Task Details List of Images
Displayed Displayed

Use Select Image

to View Image Displayed

Portal
(Aqualogic)

Get List of
Associated]
Images

Format Display Get Image to
Results Display

Format Display
Results

Case Mgt
System
(J2EE
Framework)

Document Search Get Document
Service Service

ESB
(webMethods)

Document

Document Search
Retrieval

Doc Mgt
(FileNet)

Figure 9.2- 3: Walkthrough 2

The following nodes are involved in this process:

e The Enterprise Service Bus (webMethods Integration Server)

o WebSphere Application Server, J2EE Framework, and associated applications

e web Portal Server

o FileNet Content Engine Server and Content Collector server (document management)

The scenario is defined as follows:

1. The user requests task details in a portlet.

2. The portal server invokes the application service on the WebSphere Application Server to get
a list of associated images.

3. The application invokes the document search service via the webMethods Integration Server
ESB.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 225
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

The ESB invokes the document search service from the Filenet Content Engine Server.
FileNet performs the search and returns the document image to the ESB.

The application formats the results and sends them to the portal.
The portal renders the image display (thumbnail) in the user interface (browser).

4
5.
6. The ESB forwards the document image to the application.
7
8
9

. The user selects a particular image to view.
10. The portal sends this request to the application.
11. The application invokes the get document service via the ESB.

12. The ESB invokes the get document service from FileNet.

13. FileNet returns the appropriate image to the ESB.
14. The ESB forwards the image to the application.

15. The application formats the image for display and sends this information to the portal.
16. The portal renders the image in the user interface.

9.2.1.3 Walkthrough 3 — Correspondence

This second walkthrough discusses the Correspondence application service. The following
diagram depicts the steps taken throughout this process.

Correspondence

Generate
Notice Service

ESB
(webMethods)

Service Invocation of Adobe
Notifications

Adobe Integration with FileNet
Adobe Data Merge with Form

Generate

Notice

Correspondence
System
(Adobe Forms)

Merge Data with
Form/Letter
Template

Generate

Form/Letter

Send Form/
Letter to
Distribution
Channel

Send Notice to
DocMgt

!

Store & Associate
Image Service

ESB
(webMethods)

Receive Image/

Record

Doc Mgt
(FileNet)

Record Crawler

picks up records

Store Image &

Data Elements

Associate Image

Received Event

Invoke Service to

Associate Image
to Case
(ActiveX DLL)

Figure 9.2- 4. Walkthrough 3

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

226

The following nodes are involved in this process:

e The Enterprise Service Bus (webMethods)

e Adobe LiveCycle Forms (A WebSphere Application) correspondence system

e FileNet Content Engine Server and Content Collector server (document management)

The scenario is defined as follows:

1. The webMethods Integration Server ESB invokes the generate notice service on the Adobe
LiveCycle server.

2. The Adobe components complete the notice generation process by merging dynamic data
(content) with stored forms or templates to generate a completed form or letter.

3. The notice generation is complete when Adobe sends the completed form to the distribution
channel, and a copy to document management, which it invokes via the ESB.

4. The ESB invokes the FileNet Content Engine server store and associate image service.

5. FileNet completes the document storage and association by receiving the document from the
ESB using the Content Collector server; storing the image and metadata, and invoking the
Associate Image to Case service.

9.2.2 System Support Walkthroughs

This section illustrates a typical support incident using the Tivoli system management
components. The following diagram illustrates these components:

- . UCMS Project
Tivoli Enterprise Help Desk

Console GUI

Tivoli Enterprise M
- ! ., Console Server
Tivoli Enterprise .
Portal L = ke
N G
\ \(
Historical Analysis

Reportlng
Tivoli Data

Warehouse \ l
Alert S

_..Console I

IBM Tivoli Monitoring Agents

~Om—— b, § i, '
Netview, SU ?ﬂ.& ﬂ:é
- x x .
' Transaction
Performance

OS AIX &
Windaws

WebSphere
Oracle System
D

Figure 9.2- 5: System Support Walkthroughs

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 227
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

9.2.2.1 Typical component failure walkthrough

In this section we document the process involved when a component experiences a failure. For
this example, the Oracle database is shown as the failed component.

1. The Oracle database experiences a failure which causes application unavailability.

2. The Tivoli monitoring agent on the Oracle server will immediately send an alert to the Tivoli
Enterprise Console (TEC) server that the Oracle component has filed.

3. TEC will display a high priority alert on the Enterprise Console GUI and Enterprise Portal.

4. TEC will send an e-mail to notify the UCMS project help desk that a failure has occurred, and
will automatically open a problem ticket in the ServiceNow system.

5. When the problem is resolved, the Tivoli monitoring agent on the Oracle server will send an
alert to TEC that the system is functioning normally.

6. TEC will update the Enterprise Console GUI and Enterprise Portal to reflect that the system
has returned to normal operations.

7. The help desk support staff will enter resolution information into the ServiceNow ticket and
mark it closed.

Commonwealth of Pennsylvania | Unemployment Compensation Modernization System 228
System Design and Blueprint - Updated April 2016
Copyright 2016, Commonwealth of Pennsylvania. All Rights Reserved.

